include id = function (x) x; lerp = function (v, old_min, old_max, new_min, new_max) (v-old_min)/(old_max-old_min)*(new_max-new_min)+new_min; scalc = function (f, v, min, max) lerp(f(lerp(v, min, max, 0, 1)), 0, 1, min, max); normalize = function (vector) vector / norm(vector); mat_T = function (mat) [ for (x_y=[0:len(mat[0])-1]) [ for (y_x=[0:len(mat)-1]) mat[y_x][x_y] ] ]; rotation_matrix = function(a) [ [cos(a), -sin(a), 0], [sin(a), cos(a), 0], [ 0, 0, 1] ]; bezier_matrix = [[1, -3, 3, -1], [0, 3, -6, 3], [0, 0, 3, -3], [0, 0, 0, 1]]; spline = function (control_points, spline_matrix, t) mat_T(control_points) * spline_matrix * [1, t, t*t, t*t*t]; bezier_spline = function (control_points, t) spline(control_points, bezier_matrix, t); bezier_curve_vertices = function (control_points, $fn=$fn) [ for (t=[0:1/($fn-1):1]) bezier_spline(control_points, t) ]; module bezier_curve_debug(control_points, $fn=$fn) { #color("red") for (c = control_points) translate(c) sphere(d=4, $fn=32); color("yellow") for (v = bezier_curve_vertices(control_points, $fn)) translate(v) sphere(d=.5, $fn=16); color("green") translate(bezier_spline(control_points, 0.5)) sphere(d=1, $fn=24); } // c^2=a^2+b^2 // a == b // c^2=2a^2 // /2 // c^2/2=a^2 // sqrt // sqrt(c^2/2)=a //chamfer_offset = function (c) sqrt((c*c)/2); chamfer_offset = function (c) c/2; rendered_curve_segment_vertices = function (p, v, n, width, height, chamfer) let (d=normalize(n-p)) let (up=[0, 0, 1]) let (right=normalize(cross(d, up))) [ //p, v, n, width, height, chamfer_offset(chamfer), d, up, right, v+up*(height/2)+right*(-width/2+chamfer_offset(chamfer)), v+up*(height/2)+right*(width/2-chamfer_offset(chamfer)), v+up*(height/2-chamfer_offset(chamfer))+right*(width/2), v+up*(-height/2+chamfer_offset(chamfer))+right*(width/2), v+up*(-height/2)+right*(width/2-chamfer_offset(chamfer)), v+up*(-height/2)+right*(-width/2+chamfer_offset(chamfer)), v+up*(-height/2+chamfer_offset(chamfer))+right*(-width/2), v+up*(height/2-chamfer_offset(chamfer))+right*(-width/2) ]; module render_curve(curve_vertices, width, height, chamfer, debug=false) { /* * vertex generation order: * - we generate vertices segment by segment * - one segement for every curve vertex provided * - each segment has eight vertices that form the outer ring * - the corners are chamfered so the vertices are pairs at the corners * - we start with the top segment and move clockwise * - top-down axis is determined globally by z-axis unless direction at start vertex is z * - if direction at start vertes is z, top-down is y-adis instead * - the left vertex of the top edge is 0, the other is 1 * - left-right axis is determined by normal between travel direction and up-down axis * - the last vertex is part of the same corner as 0 but part of the left edge * - segment edge n has vertices `n` and `(n+1)%8` * - segment joining edge n has vertices local index `n` of both segments * - global `i` index of local index `n` for segment `m` is `i=8*m+n` * - so we have `count=length(curve_vertices)` segments and `count*8` vertices * - we are not generating a thorus so the faces for our polyhedron are: * - two eight sided end cap faces * - `(count-1)*8` four sided mantle faces * - direction at vertex is the vector from the previonus to the next vertex * - for the first an last vertex the only neighbor is mirrored around the vertex * - the start end cap is face `0` * - the face mantle face n has vertices `[n, +(n+1)%8, n+8, n+8+(n+1)%8]` * - the stop end cap is face `count*8` */ start = let(v=curve_vertices[0], n=curve_vertices[1]) let(p=v+(v-n)) rendered_curve_segment_vertices(p, v, n, width, height, chamfer); echo("len(curve_vertices): ", len(curve_vertices)); middle = [ for (i=[1:len(curve_vertices)-2]) let( p = curve_vertices[i-1], v = curve_vertices[i], n = curve_vertices[i+1] ) each rendered_curve_segment_vertices(p, v, n, width, height, chamfer) ]; echo("len(middle): ", len(middle)); stop = let(i=len(curve_vertices)) let(v=curve_vertices[i-1], p=curve_vertices[i-2]) let(n=v+(v-p)) rendered_curve_segment_vertices(p, v, n, width, height, chamfer); if (debug) { echo(start); color("#ff00ff") for (v = start) translate(v+[0, 0, height]) sphere(d=.25, $fn=16); echo(middle); color("white") for (v = middle) translate(v+[0, 0, height]) sphere(d=.25, $fn=16); echo(stop); color("cyan") for (v = stop) translate(v+[0, 0, height]) sphere(d=.25, $fn=16); } render_vertices = concat(start, middle, stop); echo("len(render_vertices)", len(render_vertices)); echo(render_vertices); start_cap = [ for (i=[0:1:7]) i]; echo(start_cap); mantle = let (M=len(curve_vertices)-1) [ for (m=[0:M-1],n=[0:7]) let (i=m*8+n) [i, i+8, n==7 ? i+1 : i+8+1, n==7 ? i-7 : i+1] ]; echo(mantle); end_cap = let (m=len(curve_vertices)-1) [ for (i=[m*8+7:-1:m*8]) i ]; echo(end_cap); faces = concat([start_cap], mantle, [end_cap]); translate([0, 0, debug ? height : 0]) polyhedron(points=render_vertices, faces=faces); } arc_vertex = function (a, r, t, translate=[0,0,0], remap=id) remap([ translate.x+cos(a*t)*r, translate.y+sin(a*t)*r, translate.z ]); arc_vertices = function (a, r, t, x=0, y=0, z=0, remap=id, arc_vertex=arc_vertex) [ for (i=[0:1/(t-1):1]) arc_vertex(a, r, i, translate=[x,y,z], remap=remap) ]; module arc(part, radius, thickness, height, $fn=$fn, outer_remap=id, inner_remap=id, arc_vertices=arc_vertices) { a = 360 * part; r = radius+thickness/2; w = thickness; h = height; t = $fn; vertices_lower_outer = arc_vertices(a, r , t, z=-h/2, remap=outer_remap); vertices_lower_inner = arc_vertices(a, r-w, t, z=-h/2, remap=inner_remap); vertices_upper_outer = arc_vertices(a, r , t, z= h/2, remap=outer_remap); vertices_upper_inner = arc_vertices(a, r-w, t, z= h/2, remap=inner_remap); vertices = concat( vertices_lower_outer, vertices_lower_inner, vertices_upper_outer, vertices_upper_inner ); faces_end1 = [ 0, t, 3*t, 2*t]; faces_end2 = [ 2*t-1, t-1, 3*t-1, 4*t-1]; faces_lower = concat( [ for (i=[t-1:-1:0]) i ], [ for (i=[t:1:2*t-1]) i ] ); faces_upper = concat( [ for (i=[2*t:1:3*t-1]) i ], [ for (i=[4*t-1:-1:3*t]) i ] ); faces_outer = [ for (i=[0:1:t-2]) [i, 2*t+i, 2*t+i+1, i+1] ]; faces_inner = [ for (i=[0:1:t-2]) [t+i, t+i+1, 3*t+i+1, 3*t+i] ]; faces = concat( [faces_end1], [faces_end2], [faces_lower], [faces_upper], faces_outer, faces_inner ); rotate(a/2) polyhedron(vertices, faces); } module partial_ring(part, radius, thickness, height) { rotate(180-180*part, [0, 0, 1]) rotate_extrude(angle=360*part) translate([radius, 0]) square([thickness, height], center=true); }