include id = function (x) x; lerp = function (v, old_min, old_max, new_min, new_max) (v-old_min)/(old_max-old_min)*(new_max-new_min)+new_min; scalc = function (f, v, min, max) lerp(f(lerp(v, min, max, 0, 1)), 0, 1, min, max); normalize = function (vector) vector / norm(vector); mat_T = function (mat) [ for (x_y=[0:len(mat[0])-1]) [ for (y_x=[0:len(mat)-1]) mat[y_x][x_y] ] ]; bezier_matrix = [[1, -3, 3, -1], [0, 3, -6, 3], [0, 0, 3, -3], [0, 0, 0, 1]]; spline = function (control_points, spline_matrix, t) mat_T(control_points) * spline_matrix * [1, t, t*t, t*t*t]; bezier_spline = function (control_points, t) spline(control_points, bezier_matrix, t); bezier_curve_vertices = function (control_points, $fn=$fn) [ for (t=[0:1/($fn-1):1]) bezier_spline(control_points, t) ]; module bezier_curve_debug(control_points, $fn=$fn) { #color("red") for (c = control_points) translate(c) sphere(d=4, $fn=32); color("yellow") for (v = bezier_curve_vertices(control_points, $fn)) translate(v) sphere(d=.5, $fn=16); color("green") translate(bezier_spline(control_points, 0.5)) sphere(d=1, $fn=24); } rendered_curve_segment_vertices = function (p, v, n, width, height, chamfer) []; module render_curve(curve_vertices, width, height, chamfer) { start = let(v=curve_vertices[0], n=curve_vertices[1]) let(p=v-n) rendered_curve_segment_vertices(p, v, n, width, height, chamfer); middle = [ for (i=[1:len(curve_vertices)-2]) let( p = curve_vertives[i-1], v = curve_vertices[i], n = curve_vertives[i+1] ) rendered_curve_segment_vertices(p, v, n, width, height, chamfer) ]; end = let(i=len(curve_vertices)) let(v=curve_vertices[i], p=curve_vertices[i-1]) let(n=v-p) rendered_curve_segment_vertices(p, v, n, width, height, chamfer); // TODO } arc_vertex = function (a, r, t, translate=[0,0,0], remap=id) remap([ translate.x+cos(a*t)*r, translate.y+sin(a*t)*r, translate.z ]); arc_vertices = function (a, r, t, x=0, y=0, z=0, remap=id, arc_vertex=arc_vertex) [ for (i=[0:1/(t-1):1]) arc_vertex(a, r, i, translate=[x,y,z], remap=remap) ]; module arc(part, radius, thickness, height, $fn=$fn, outer_remap=id, inner_remap=id, arc_vertices=arc_vertices) { a = 360 * part; r = radius+thickness/2; w = thickness; h = height; t = $fn; vertices_lower_outer = arc_vertices(a, r , t, z=-h/2, remap=outer_remap); vertices_lower_inner = arc_vertices(a, r-w, t, z=-h/2, remap=inner_remap); vertices_upper_outer = arc_vertices(a, r , t, z= h/2, remap=outer_remap); vertices_upper_inner = arc_vertices(a, r-w, t, z= h/2, remap=inner_remap); vertices = concat( vertices_lower_outer, vertices_lower_inner, vertices_upper_outer, vertices_upper_inner ); faces_end1 = [ 0, t, 3*t, 2*t]; faces_end2 = [ 2*t-1, t-1, 3*t-1, 4*t-1]; faces_lower = concat( [ for (i=[t-1:-1:0]) i ], [ for (i=[t:1:2*t-1]) i ] ); faces_upper = concat( [ for (i=[2*t:1:3*t-1]) i ], [ for (i=[4*t-1:-1:3*t]) i ] ); faces_outer = [ for (i=[0:1:t-2]) [i, 2*t+i, 2*t+i+1, i+1] ]; faces_inner = [ for (i=[0:1:t-2]) [t+i, t+i+1, 3*t+i+1, 3*t+i] ]; faces = concat( [faces_end1], [faces_end2], [faces_lower], [faces_upper], faces_outer, faces_inner ); rotate(a/2) polyhedron(vertices, faces); } module partial_ring(part, radius, thickness, height) { rotate(180-180*part, [0, 0, 1]) rotate_extrude(angle=360*part) translate([radius, 0]) square([thickness, height], center=true); }