scad/c3cat-bottle-clip/c3cat-bottle-clip.scad
2026-01-15 18:24:34 +01:00

681 lines
23 KiB
OpenSCAD

/**
* A name tag that can easily be clipped to the neck of your bottle.
* Copyright (C) 2013 Roland Hieber <rohieb+bottleclip@rohieb.name>
*
* This file was modified by obelix <christian@loelkes.com> for the
* OHM2013-Logo. If you wish to use other logos please use the original
* file. All other parameters were not modified.
*
* This file was modified again by djerun to use the catars printed
* by c3cat: https://www.printables.com/model/35076-cat-ears
* as the logo and optionally allow use the ears from
* https://www.thingiverse.com/thing:5029374
* printed at scale 0.2 as glue-ins for additional ears.
*
*
* The contents of this file are licenced under CC-BY-SA 3.0 Unported.
* See https://creativecommons.org/licenses/by-sa/3.0/deed for the
* licensing terms.
*/
include <write/Write.scad>
use <catear_headband.scad>
// The name that is printed on your name tag.
NAME = "c3cat";
// The logo that is printed on your name tag. Has to be a DXF file. You can use the thing-logo repository for inspiration.
LOGO_FILE = ""; // empty string is catear model
// The font to be used for the name tag. See Write.scad for details.
FONT = ""; // empty string is for Orbitron font
// Format of the bottle clip you want to create.
FORMAT = 3; // [0=Club Mate 50cL, 1=Long Neck as 25cL Club Mate or Fritz-kola, 2=Euroform 2, 3=Steinie bottles]
// Style of the ears to add... or not add. This parameter can add a LOT of calculation time.
EARS_STYLE = 0; // [0=No ears, 1=Just arcs, 2=Filled ears with the same thickness, 3=Filled ears with the a thinner thickness inside]
/* [Render] */
// Whether to render the clip, the body.
RENDER_COLOR_CLIP = true;
// Whether to render the text part.
RENDER_COLOR_TEXT = true;
// Whether to render the logo part.
RENDER_COLOR_LOGO = true;
// Whether to render the cat ears part.
RENDER_COLOR_EARS = true;
// Set the number of facets for circles.
$fn = 360;
/**
* Creates one instance of a bottle clip name tag. The default values are
* suitable for 0.5l Club Mate bottles (and similar bottles). By default, logo
* and text are placed on the name tag so they both share half the height. In this
* version the logo is fixed.
*
* Parameters:
* ru: the radius on the upper side of the clip
* rl: the radius on the lower side of the clip
* ht: the height of the clip
* width: the thickness of the wall. Values near 2.5 usually result in a good
* clippiness for PLA prints.
* name: the name that is printed on your name tag. For the default ru/rt/ht
* values, this string should not exceed 18 characters to fit on the name tag.
* font: the path to a font for Write.scad.
*/
scale([0.2, 0.2, 0.2]) {
render_bottle_clip(
name=NAME,
font=FONT,
logo=LOGO_FILE,
format=FORMAT,
ears_style=EARS_STYLE);
}
module render_bottle_clip(name="", font="", logo="", format=0, ears_style=1) {
name = name == "" ? "c3cat" : name ;
font = font == "" ? "write/orbitron.dxf" : font ;
if (format < 0 || format > 3) {
assert(false, str("Unknown format ", format, "."));
}
// Format == 0: Club-Mate 0.5L bottle
// Format == 1: Long Neck bottle (like fritz-kola) 0.25L
// Format == 2: Euroform 2 bottle
// Format == 3: Steinie bottle
ru = 13;
rl = format == 1 ? 15 : format == 2 ? 22.5 : 17.5 ;
ht = format == 3 ? 13 : 26 ;
width = 2.5;
scale([5, 5, 5]) {
difference() {
bottle_clip(
name=NAME,
font=FONT,
logo=LOGO_FILE,
ru=ru,
rl=rl,
ht=ht,
width=width);
// Render ears if requested
if (ears_style > 0) {
ears(ht=ht, ru=ru, rl=rl, clip_width=width, ears_style=ears_style);
}
}
// Render ears if requested
if (ears_style > 0 && RENDER_COLOR_EARS) {
ears(ht=ht, ru=ru, rl=rl, clip_width=width, ears_style=ears_style);
}
}
}
module name(name, font, rl, ht, ru) {
writecylinder(
text=name,
where=[0, 0, 0],
radius=rl+0.5,
height=ht/13*7,
h=ht/13*4,
t=max(rl,ru),
font=font);
}
module logo(logo, rl, ht, ru, width) {
echo(logo=logo);
if(logo == "") {
// No logo file specified? Let's print a catear headband instead!
ear_size=ht;
echo(ht=ht);
echo(ru=ru);
echo(rl=rl);
echo(width=width);
translate([0, -max(ru,rl), ht*3/4+.5])
rotate([90, 0, 0])
scale([1, 1, 1])
scale([ht/100, ht/100, 1])
translate([0, -ht/2, 0])
rotate(-90, [0, 0, 1])
catear_headband(
size=ear_size,
height=max(ru, rl),
thickness=width,
stretch_len=0,
tip_len=0,
details=false,
with_rake=false
);
} else {
// The logo has been split in 3 parts. // well was... TODO
/*
rotate([0, 0, -48]) translate([0, 0, ht*3/4-0.1])
rotate([90, 0, 0])
scale([0.9, 0.9, 1])
scale([ht/100, ht/100, 1])
translate([-25, -29, 0.5])
linear_extrude(height=max(ru,rl)*2)
import("logo_1.dxf");
*/
translate([0, 0, ht*3/4-0.1])
rotate([90, 0, 0])
scale([0.8, 0.8, 1])
scale([ht/100, ht/100, 1])
translate([-18, -22, 0.5])
linear_extrude(height=max(ru, rl)*2)
import(logo);
/*
rotate([0, 0, 44]) translate([0, 0, ht*3/4-0.1])
rotate([90, 0, 0])
scale([0.7, 0.7, 1])
scale([ht/100, ht/100, 1])
translate([-25, -26, 0.5])
linear_extrude(height=max(ru,rl)*2)
import("logo_3.dxf");
*/
}
}
module bottle_clip(ru=13, rl=17.5, ht=26, width=2.5, name="c3cat", font="write/orbitron.dxf", logo="") {
e = 100; // should be big enough, used for the outer boundary of the text/logo
// main cylinder
if (RENDER_COLOR_CLIP) {
color("black") difference() {
cylinder(r1=rl+width, r2=ru+width, h=ht);
difference() {
union() {
name(name=name, font=font, rl=rl, ht=ht, ru=ru);
logo(logo=logo, rl=rl, ht=ht, ru=ru, width=width);
}
cylinder(r1=rl+width/2, r2=ru+width/2, h=ht);
}
clear_anti_aliasing = 0.01; // The margin to avoid empty surfaces in the preview.
translate([0, 0, -clear_anti_aliasing/2])
cylinder(r1=rl, r2=ru, h=ht+clear_anti_aliasing);
// finally, subtract a cube as a gap so we can clip it to the bottle
rotate([0, 0, 45])
translate([0, 0, -1])
cube([50, 50, 50]);
}
}
// text
if (RENDER_COLOR_TEXT) {
color("orange") difference() {
name(name=name, font=font, rl=rl, ht=ht, ru=ru);
cylinder(r1=rl+width/2, r2=ru+width/2, h=ht);
outer_cutoff(rl, e, ru, ht, width);
}
}
// logo
if (RENDER_COLOR_LOGO) {
color("yellow") difference() {
logo(logo=logo, rl=rl, ht=ht, ru=ru, width=2*width);
cylinder(r1=rl+width/2, r2=ru+width/2, h=ht);
outer_cutoff(rl, e, ru, ht, width);
}
}
}
module outer_cutoff(rl, e, ru, ht, width) {
// outer cylinder which is subtracted, so the text and the logo end
// somewhere on the outside ;-)
difference () {
cylinder(r1=rl+e, r2=ru+e, h=ht);
translate([0, 0, -1])
// Note: bottom edges of characters are hard to print when character
// depth is > 0.7
cylinder(r1=rl+width+0.7, r2=ru+width+0.7, h=ht+2);
}
}
/**
* Will create a pair of ears to the bottle clip. By default, they are cat ears.
*
* Parameters:
*
* Positioning:
* ht: the height of the bottle clip, used to scale the ears
* ru: the radius on the upper side of the clip, used to position the ears
* rl: the radius on the lower side of the clip, used to position the ears
* clip_width: the thickness of the bottle clip
*
* Ears:
* space_between_ears: Space between both ears.
* ear_tilt: The X orientation of the ears, to give a more organic look. Angle in degree
*
* ear_depth: the depth of the ear
* ear_thickness: the thickness of the ear arcs
* ear_side_len: the length of one side of the ear base triangle
* ear_bend_factor: how much the ear is bent. 1 = half circle, 0.00001 = almost straight
* ear_stretch_factor: how much the ear is stretched, useful for fox ears or this kind of shapes
*
* ear_chamfer: size of the chamfer to apply to the edges
* ear_chamfer_shape: The shape of the chamfer: "cone", "curve", "curve-in", "pyramid", maybe some others
* ear_details: whether to chamfer also the partial arcs
*
*/
module ears(ht, ru, rl, clip_width, space_between_ears = 15, ear_tilt = 15, ear_depth=2, ear_thickness=.6, ear_side_len=6, ear_bend_factor=0.5, ear_stretch_factor=1.2, ear_chamfer=1, ear_chamfer_shape="curve", ear_details=true, ears_style=1) {
// This is the radius on which the ears has to be to be centered on the clip.
radius = ru+(clip_width/2);
// Math time!
// The ears are not that bad without this calculation, but I want to improve the base and the join between ears and the clip.
// Actually, by tilting the ear, a side of the end will go deeper withing the clip, but the other side may be separated from the clip.
// So we need to translate the ears more deeper within the clip to avoid any separation
//
// So! Trigonometry!
//
// Viewed from the right of the ear, an ear is like that:
//
// A
// |\
// | \
// h | \ s
// | \
// +----\ D
// C l \
// \
// \
// \
// B
//
// A is the side of the ear which is going upper
// B is the side of the ear which is going deeper
// C is the clip level
// D is the midpoint between A and B
// s is the depth of the ear (from A to B!)
// h is the heigh we are searching for. We will lower the ear of this size.
// l is the half of length of the fingerprint of the ear in the clip.
// ADC is the tilt angle
// ACD is a 90 degree angle
//
// So, to find the h length, we can use s and the angle ADC.
//
// CAH => We don't have the adjacent length. So, we can't use this formula
// SOH => sin(ADC) = h / (s/2)
// TOA => We don't have the adjacent length. So, we can't use this formula
//
// sin(ADC) = h / (s/2)
// sin(ADC) * (s/2) = h
//
// BUT! Since we will raise the Clip level C to the end of the ear A, the print of the ear within the clip will be shifted of `l`!
// So, let's calculate it!
//
//
// CAH => cos(ADC) = l / (s/2)
// SOH => Is not targeting what we want.
// TOA => The opposed side is less precise than the hypotenuse, so, we will not use this formula
//
// cos(ADC) = l / (s/2)
// cos(ADC) * (s/2) = l
tilt_compensation = sin(ear_tilt) * (ear_depth/2);
tilt_shift = cos(ear_tilt) * (ear_depth/2);
// Pythagoras!
// Viewed from the top, an ear is like that:
//
// A s
// +----- E
// | /
// x | / r
// | /
// |/
// c
//
// c is the center of the circle forming the top surface of the clip
// E is the perfect position of the ear
// r is the radius, calculated previously
// s is the half of the space between ears
// x is the position of the ears on the Y axis. It's what we want to calculate
// A is the projection of the ears on the Y axis
// A is a 90 degrees angle
//
// x**2 + s**2 = r**2
// x**2 = r**2 - s**2
// x = sqrt( r**2 - s**2 )
s = space_between_ears / 2;
pos_ears_yaxis = sqrt(pow(radius, 2) - pow(s, 2));
// Trigonometry!
// Now, lets, rotate the ears to be at tangent to the clip
//
// From the top, an ear is like this:
//
// A s
// +------- E
// | /
// | /
// x | / r
// | /
// | /
// | /
// |/
// C
//
// E is the position of the ears
// C is the center of the clip
// A is the projection of the ears on the Y axis
// r is the radius
// s is the half of the space between the ears.
// x is the same from the last figure.
// A is a 90 degrees angle
//
// The angle of the ear is the same as the angle ACE.
// So, we need to calculate this angle
//
// Since, we already know every lengths s, r and x, we can choose the formula we want!
// IDK which one is faster, but that could be a nice optimization.
//
// CAH => cos(ACE) = x/r
// SOH => sin(ACE) = s/r
// TOA => tan(ACE) = x/s
//
// Let's choose the sine, since it's linked to the our best raw non-rounded values. It will give us values with the best accuracy.
ears_angle = asin(s/radius);
// Like that, it's good enough. And it could be committed like that. Actually, my first model (never published it) was like that.
// BUT we can do better and smarter! (and we will probably need to refine it)
// If we stop our math here, we centered the middle of the ear on the clip. But the end of the ears are NOT centered.
//
// So, we will use (again) Pythagoras!
// We want to position the ear (on its center) to put the end of the ear in the radius.
//
// Form the top, an ear looks like that:
// e
// /|
// / |
// / |
// r / | h
// / |
// / |
// / |
// C /-------+ E
// p
//
// C is the center of the clip
// e is the end of the ear
// E is the middle of the ear.
// r is the Radius
// h is the half of the width of the ear
// E is a 90 degrees angles
// p is wanted length to position correctly the center of the ear.
//
// h**2 + p**2 = r**2
// p**2 = r**2 - h**2
// p = sqrt(r**2 - h**2)
center_radius = sqrt( pow(radius, 2) - pow((ear_side_len+(tilt_shift))/2, 2) );
// So, we need to update the projection of the ears on the Y axis, based on center_radius, instead of radius.
pos_ears_yaxis_end_ear = sqrt(pow(center_radius, 2) - pow(s, 2));
translate([0, -pos_ears_yaxis_end_ear, ht-tilt_compensation-(ear_thickness/2)])
rotate(90, [0, 0, 1])
rotate(90, [0, 1, 0])
union() {
scale([1, 1 ,1])
translate([0, space_between_ears/2, 0])
rotate(ears_angle, [1, 0, 0])
rotate(-ear_tilt, [0, 1, 0])
ear_with_style(
style=ears_style,
depth=ear_depth,
thickness=ear_thickness,
side_len=ear_side_len,
bend_factor=ear_bend_factor,
stretch_factor=ear_stretch_factor,
chamfer=ear_chamfer,
chamfer_shape=ear_chamfer_shape,
details=ear_details
);
scale([1, -1, 1])
translate([0, space_between_ears/2, 0])
rotate(ears_angle, [1, 0, 0])
rotate(-ear_tilt, [0, 1, 0])
ear_with_style(
style=ears_style,
depth=ear_depth,
thickness=ear_thickness,
side_len=ear_side_len,
bend_factor=ear_bend_factor,
stretch_factor=ear_stretch_factor,
chamfer=ear_chamfer,
chamfer_shape=ear_chamfer_shape,
details=ear_details
);
}
}
module ear_with_style(style = 1, depth, thickness, side_len=30, bend_factor=0.5, stretch_factor=1.2, chamfer=1, chamfer_shape="curve", details=true) {
if (style == 1 || style == 2 || style == 3) {
// Style 1: Just arcs
// Style 2: Filled ears with the same thickness
// Style 3: Filled ears with the a thinner thickness inside
ear(
depth=depth,
thickness=thickness,
side_len=side_len,
bend_factor=bend_factor,
stretch_factor=stretch_factor,
chamfer=chamfer,
chamfer_shape=chamfer_shape,
details=details
);
}
if (style == 2 || style == 3) {
// Style 2: Filled ears with the same thickness
// Style 3: Filled ears with the a thinner thickness inside
thickness_steps = thickness*0.5;
depth_steps = (depth-thickness)/((side_len / thickness_steps));
for (round_side_len = [side_len-thickness_steps:-thickness_steps:0]) {
// round_side_len = side_len - (thickness_steps * x)
// (thickness_steps * x) + round_side_len = side_len
// (thickness_steps * x) = side_len - round_side_len
// x = (side_len - round_side_len) / thickness_steps
x = (side_len - round_side_len) / thickness_steps;
round_shift = depth_steps * x;
current_depth = depth - (style == 3 ? round_shift : 0);
translation = style == 2 ? 0 : round_shift / 2;
translate([0, 0, translation])
color("green")
ear(
depth=current_depth,
thickness=thickness,
side_len=round_side_len,
bend_factor=bend_factor,
stretch_factor=stretch_factor,
chamfer=chamfer,
chamfer_shape=chamfer_shape,
details=true
);
}
}
}
/**
* Module that creates an ear shape.
*
* Parameters:
*
* depth: the depth of the ear
* thickness: the thickness of the ear arcs
* side_len: the length of one side of the ear base triangle
* bend_factor: how much the ear is bent. 1 = half circle, 0.00001 = almost straight
* stretch_factor: how much the ear is stretched, useful for fox ears or this kind of shapes
*
* chamfer: size of the chamfer to apply to the edges
* chamfer_shape: The shape of the chamfer: "cone", "curve", "curve-in", "pyramid", maybe some others
* details: whether to chamfer also the partial arcs
*
* By default, this module creates an ear.
*
* I don't remember the original author of this module. I refactored it and improved it a bit. Documentation is from me.
*/
module ear(depth, thickness, side_len=30, bend_factor=0.5, stretch_factor=1.2, chamfer=1, chamfer_shape="curve", details=true) {
depth = depth == undef ? 20 : depth ;
thickness = thickness == undef ? 3 : thickness ;
// $A and $B are the end of the ear
// $C is the higher end point.
$A=[0, side_len/2];
$B=[0,-side_len/2];
// From the front, an ear looks like:
//
// $C
// /|\
// / | \
// / | \
// /---+---\
// $B c $A
//
// c is the origin of the ear.
// $Bc$C and $Ac$C are 90deg angles.
//
// The length [$B $A] is `side_len`
// Thus, [$B c] == [c $A] == side_len/2
//
// Since SOH, sin(angle) = Opposed / Hypotenuse
// sin(angle) = Opposed / Hypotenuse
// sin(angle) * Hypotenuse = Opposed
// Hypotenuse = Opposed / sin(angle)
//
// Thus, the `(side_len/2/sin(120))` implies that "The opposed side of the 120 angle is `(side_len/2)` length" and is the formula to know the size of the hypotenuse.
// Moreover, a 120deg angle in a right rectangle does not exists: the sum of all the angles of a triangle needs to be 180deg. I think the author tried, instead, to use the 60 as an angle, since the sinus is the same.
//
// The correct formula should be `((side_len/2)*tan(60))`: since $C$B$A should a 60deg angle to have an equilateral `$A$B$C` triangle, the product of the tangent ("TOA") of this angle and the adjacent segment [$B c] will give us the size of length of the opposed segment [$C c].
//
// MOREOVER, the product of the magic number `1.5` with the divisor `sin(120)`... is actually the result of the `tan(60)`!
//
// The original formula was:
// $C=[-(side_len/2/sin(120))*1.5*stretch_factor, 0];
$C=[-((side_len/2)*tan(60))*stretch_factor, 0];
// $a, $b and $c are the distance between the different points of the triangle.
$c=sqrt(pow($A.x-$B.x, 2)+pow($A.y-$B.y, 2));
$b=sqrt(pow($A.x-$C.x, 2)+pow($A.y-$C.y, 2));
$a=sqrt(pow($C.x-$B.x, 2)+pow($C.y-$B.y, 2));
// $hc is the height of $C.
$hc=-$C.x;
// If I correctly understood, $alpha should be the angle of the $B$A$C. This should be 60deg... but is not. idk why.
$alpha=asin($hc/$b);
$beta=$alpha;
$gamma=180-$alpha-$beta;
$delta=180*bend_factor;
$bend_radius=$a/(2*cos(90-$delta/2));
$bend_offset=$bend_radius*sin(90-$delta/2);
translate([0, -$c/2, 0])
rotate($beta, [0, 0, 1])
translate([0, $a/2, 0])
translate([$bend_offset, 0, 0])
color("#00ffff")
chamfer(size=(details)?chamfer:0, child_h=depth, child_bot=-depth/2, shape=chamfer_shape)
partial_ring(
part=$delta/360,
radius=$bend_radius,
thickness=thickness,
height=depth
);
translate([0, $c/2, 0])
rotate(-$alpha, [0, 0, 1])
translate([0, -$b/2, 0])
translate([$bend_offset, 0, 0])
color("#ff00ff")
chamfer(size=(details)?chamfer:0, child_h=depth, child_bot=-depth/2, shape=chamfer_shape)
partial_ring(
part=$delta/360,
radius=$bend_radius,
thickness=thickness,
height=depth
);
translate($A) color("#aaaaaa")
chamfer(size=chamfer, child_h=depth, child_bot=-depth/2, shape=chamfer_shape)
cylinder(h=depth, d=thickness, center=true);
translate($B) color("#bbbbbb")
chamfer(size=chamfer, child_h=depth, child_bot=-depth/2, shape=chamfer_shape)
cylinder(h=depth, d=thickness, center=true);
translate($C) color("#cccccc")
chamfer(size=chamfer, child_h=depth, child_bot=-depth/2, shape=chamfer_shape)
cylinder(h=depth, d=thickness, center=true);
}
/**
* This module is not mine.
*/
module partial_ring(part, radius, thickness, height) {
rotate(180-180*part, [0, 0, 1])
rotate_extrude(angle=360*part)
translate([radius, 0])
square([thickness, height], center=true);
}
/**
* This module is not mine.
*/
module chamfer(size=2, child_h=5, child_bot=0, shape="curve") {
chamfer_size=size;
module chamfer_shape() {
if (shape == "cone") {
$fn=16;
cylinder(chamfer_size/2,chamfer_size/2,0);
} else if (shape == "curve") {
$fn=4;
for( y = [0:1/$fn:1]) {
cylinder(chamfer_size/2*(1-y),chamfer_size/2/cos(180/$fn)*y,0);
}
} else if (shape == "curve-in") {
$fn=16;
intersection() {
sphere(chamfer_size/2/cos(180/$fn));
translate([0,0,chamfer_size/2])
cube(chamfer_size, center=true);
}
} else if (shape == "pyramid") {
$fn=4;
cylinder(chamfer_size/2/cos(180/$fn),chamfer_size/2,0);
}
}
module lower_chamfer() {
minkowski()
{
linear_extrude(0.0001) difference() {
square([1000,1000],center=true);
projection()children(0);
}
chamfer_shape();
}
}
module upper_chamfer() {
scale([1,1,-1])lower_chamfer()children();
}
render()difference() {
children();
translate([0,0,child_bot])lower_chamfer()children();
translate([0,0,child_bot+child_h])upper_chamfer()children();
}
}