601 lines
19 KiB
OpenSCAD
601 lines
19 KiB
OpenSCAD
/**
|
|
* A name tag that can easily be clipped to the neck of your bottle.
|
|
* Copyright (C) 2013 Roland Hieber <rohieb+bottleclip@rohieb.name>
|
|
*
|
|
* This file was modified by obelix <christian@loelkes.com> for the
|
|
* OHM2013-Logo. If you wish to use other logos please use the original
|
|
* file. All other parameters were not modified.
|
|
*
|
|
* This file was modified again by djerun to use the catars printed
|
|
* by c3cat: https://www.printables.com/model/35076-cat-ears
|
|
* as the logo and optionally allow use the ears from
|
|
* https://www.thingiverse.com/thing:5029374
|
|
* printed at scale 0.2 as glue-ins for additional ears.
|
|
*
|
|
*
|
|
* The contents of this file are licenced under CC-BY-SA 3.0 Unported.
|
|
* See https://creativecommons.org/licenses/by-sa/3.0/deed for the
|
|
* licensing terms.
|
|
*/
|
|
|
|
include <write/Write.scad>
|
|
use <catear_headband.scad>
|
|
|
|
|
|
// The name that is printed on your name tag.
|
|
NAME = "c3cat";
|
|
// The logo that is printed on your name tag. Has to be a DXF file. You can use the thing-logo repository for inspiration.
|
|
LOGO_FILE = ""; // empty string is catear model
|
|
// The font to be used for the name tag. See Write.scad for details.
|
|
FONT = ""; // empty string is for Orbitron font
|
|
|
|
// Format of the bottle clip you want to create.
|
|
FORMAT = 3; // [0=Club Mate 50cL, 1=Long Neck as 25cL Club Mate or Fritz-kola, 2=Euroform 2, 3=Steinie bottles]
|
|
|
|
// Append ears to the bottle clip
|
|
HAS_EARS = true;
|
|
|
|
/* [Render] */
|
|
// Whether to render the clip, the body.
|
|
RENDER_COLOR_CLIP = true;
|
|
// Whether to render the text part.
|
|
RENDER_COLOR_TEXT = true;
|
|
// Whether to render the logo part.
|
|
RENDER_COLOR_LOGO = true;
|
|
// Whether to render the cat ears part.
|
|
RENDER_COLOR_EARS = true;
|
|
|
|
// Set the number of facets for circles.
|
|
$fn = 360;
|
|
|
|
|
|
/**
|
|
* Creates one instance of a bottle clip name tag. The default values are
|
|
* suitable for 0.5l Club Mate bottles (and similar bottles). By default, logo
|
|
* and text are placed on the name tag so they both share half the height. In this
|
|
* version the logo is fixed.
|
|
*
|
|
* Parameters:
|
|
* ru: the radius on the upper side of the clip
|
|
* rl: the radius on the lower side of the clip
|
|
* ht: the height of the clip
|
|
* width: the thickness of the wall. Values near 2.5 usually result in a good
|
|
* clippiness for PLA prints.
|
|
* name: the name that is printed on your name tag. For the default ru/rt/ht
|
|
* values, this string should not exceed 18 characters to fit on the name tag.
|
|
* font: the path to a font for Write.scad.
|
|
*/
|
|
|
|
scale([0.2, 0.2, 0.2]) {
|
|
render_bottle_clip(
|
|
name=NAME,
|
|
font=FONT,
|
|
logo=LOGO_FILE,
|
|
format=FORMAT,
|
|
has_ears=HAS_EARS);
|
|
}
|
|
|
|
module render_bottle_clip(name="", font="", logo="", format=0, has_ears=true) {
|
|
name = name == "" ? "c3cat" : name ;
|
|
font = font == "" ? "write/orbitron.dxf" : font ;
|
|
|
|
if (format < 0 || format > 3) {
|
|
assert(false, str("Unknown format ", format, "."));
|
|
}
|
|
|
|
// Format == 0: Club-Mate 0.5L bottle
|
|
// Format == 1: Long Neck bottle (like fritz-kola) 0.25L
|
|
// Format == 2: Euroform 2 bottle
|
|
// Format == 3: Steinie bottle
|
|
ru = 13;
|
|
rl = format == 1 ? 15 : format == 2 ? 22.5 : 17.5 ;
|
|
ht = format == 3 ? 13 : 26 ;
|
|
width = 2.5;
|
|
|
|
|
|
scale([5, 5, 5]) {
|
|
difference() {
|
|
bottle_clip(
|
|
name=NAME,
|
|
font=FONT,
|
|
logo=LOGO_FILE,
|
|
ru=ru,
|
|
rl=rl,
|
|
ht=ht,
|
|
width=width);
|
|
|
|
// Render ears if requested
|
|
if (has_ears) {
|
|
ears(ht=ht, ru=ru, rl=rl, clip_width=width, ears_style=ears_style);
|
|
}
|
|
}
|
|
|
|
// Render ears if requested
|
|
if (has_ears && RENDER_COLOR_EARS) {
|
|
ears(ht=ht, ru=ru, rl=rl, clip_width=width, ears_style=ears_style);
|
|
}
|
|
}
|
|
}
|
|
|
|
module name(name, font, rl, ht, ru) {
|
|
writecylinder(
|
|
text=name,
|
|
where=[0, 0, 0],
|
|
radius=rl+0.5,
|
|
height=ht/13*7,
|
|
h=ht/13*4,
|
|
t=max(rl,ru),
|
|
font=font);
|
|
}
|
|
|
|
module logo(logo, rl, ht, ru, width) {
|
|
echo(logo=logo);
|
|
if(logo == "") {
|
|
// No logo file specified? Let's print a catear headband instead!
|
|
ear_size=ht;
|
|
echo(ht=ht);
|
|
echo(ru=ru);
|
|
echo(rl=rl);
|
|
echo(width=width);
|
|
translate([0, -max(ru,rl), ht*3/4+.5])
|
|
rotate([90, 0, 0])
|
|
scale([1, 1, 1])
|
|
scale([ht/100, ht/100, 1])
|
|
translate([0, -ht/2, 0])
|
|
rotate(-90, [0, 0, 1])
|
|
catear_headband(
|
|
size=ear_size,
|
|
height=max(ru, rl),
|
|
thickness=width,
|
|
stretch_len=0,
|
|
tip_len=0,
|
|
details=false,
|
|
with_rake=false
|
|
);
|
|
} else {
|
|
// The logo has been split in 3 parts. // well was... TODO
|
|
/*
|
|
rotate([0, 0, -48]) translate([0, 0, ht*3/4-0.1])
|
|
rotate([90, 0, 0])
|
|
scale([0.9, 0.9, 1])
|
|
scale([ht/100, ht/100, 1])
|
|
translate([-25, -29, 0.5])
|
|
linear_extrude(height=max(ru,rl)*2)
|
|
import("logo_1.dxf");
|
|
*/
|
|
translate([0, 0, ht*3/4-0.1])
|
|
rotate([90, 0, 0])
|
|
scale([0.8, 0.8, 1])
|
|
scale([ht/100, ht/100, 1])
|
|
translate([-18, -22, 0.5])
|
|
linear_extrude(height=max(ru, rl)*2)
|
|
import(logo);
|
|
/*
|
|
rotate([0, 0, 44]) translate([0, 0, ht*3/4-0.1])
|
|
rotate([90, 0, 0])
|
|
scale([0.7, 0.7, 1])
|
|
scale([ht/100, ht/100, 1])
|
|
translate([-25, -26, 0.5])
|
|
linear_extrude(height=max(ru,rl)*2)
|
|
import("logo_3.dxf");
|
|
*/
|
|
}
|
|
}
|
|
|
|
module bottle_clip(ru=13, rl=17.5, ht=26, width=2.5, name="c3cat", font="write/orbitron.dxf", logo="") {
|
|
e = 100; // should be big enough, used for the outer boundary of the text/logo
|
|
|
|
// main cylinder
|
|
if (RENDER_COLOR_CLIP) {
|
|
color("black") difference() {
|
|
cylinder(r1=rl+width, r2=ru+width, h=ht);
|
|
difference() {
|
|
union() {
|
|
name(name=name, font=font, rl=rl, ht=ht, ru=ru);
|
|
logo(logo=logo, rl=rl, ht=ht, ru=ru, width=width);
|
|
}
|
|
cylinder(r1=rl+width/2, r2=ru+width/2, h=ht);
|
|
}
|
|
|
|
clear_anti_aliasing = 0.01; // The margin to avoid empty surfaces in the preview.
|
|
translate([0, 0, -clear_anti_aliasing/2])
|
|
cylinder(r1=rl, r2=ru, h=ht+clear_anti_aliasing);
|
|
// finally, subtract a cube as a gap so we can clip it to the bottle
|
|
rotate([0, 0, 45])
|
|
translate([0, 0, -1])
|
|
cube([50, 50, 50]);
|
|
}
|
|
}
|
|
// text
|
|
if (RENDER_COLOR_TEXT) {
|
|
color("orange") difference() {
|
|
name(name=name, font=font, rl=rl, ht=ht, ru=ru);
|
|
cylinder(r1=rl+width/2, r2=ru+width/2, h=ht);
|
|
outer_cutoff(rl, e, ru, ht, width);
|
|
}
|
|
}
|
|
// logo
|
|
if (RENDER_COLOR_LOGO) {
|
|
color("yellow") difference() {
|
|
logo(logo=logo, rl=rl, ht=ht, ru=ru, width=2*width);
|
|
cylinder(r1=rl+width/2, r2=ru+width/2, h=ht);
|
|
outer_cutoff(rl, e, ru, ht, width);
|
|
}
|
|
}
|
|
}
|
|
|
|
module outer_cutoff(rl, e, ru, ht, width) {
|
|
// outer cylinder which is subtracted, so the text and the logo end
|
|
// somewhere on the outside ;-)
|
|
difference () {
|
|
cylinder(r1=rl+e, r2=ru+e, h=ht);
|
|
translate([0, 0, -1])
|
|
// Note: bottom edges of characters are hard to print when character
|
|
// depth is > 0.7
|
|
cylinder(r1=rl+width+0.7, r2=ru+width+0.7, h=ht+2);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Will create a pair of ears to the bottle clip. By default, they are cat ears.
|
|
*
|
|
* Parameters:
|
|
*
|
|
* Positioning:
|
|
* ht: the height of the bottle clip, used to scale the ears
|
|
* ru: the radius on the upper side of the clip, used to position the ears
|
|
* rl: the radius on the lower side of the clip, used to position the ears
|
|
* clip_width: the thickness of the bottle clip
|
|
*
|
|
* Ears:
|
|
* space_between_ears: Space between both ears.
|
|
* ear_tilt: The X orientation of the ears, to give a more organic look. Angle in degree
|
|
*
|
|
* ear_depth: the depth of the ear
|
|
* ear_thickness: the thickness of the ear arcs
|
|
* ear_side_len: the length of one side of the ear base triangle
|
|
* ear_bend_factor: how much the ear is bent. 1 = half circle, 0.00001 = almost straight
|
|
* ear_stretch_factor: how much the ear is stretched, useful for fox ears or this kind of shapes
|
|
*
|
|
* ear_chamfer: size of the chamfer to apply to the edges
|
|
* ear_chamfer_shape: The shape of the chamfer: "cone", "curve", "curve-in", "pyramid", maybe some others
|
|
* ear_details: whether to chamfer also the partial arcs
|
|
*
|
|
*/
|
|
module ears(ht, ru, rl, clip_width, space_between_ears = 15, ear_tilt = 15, ear_depth=2, ear_thickness=.6, ear_side_len=6, ear_bend_factor=0.5, ear_stretch_factor=1.2, ear_chamfer=1, ear_chamfer_shape="curve", ear_details=true) {
|
|
|
|
// This is the radius on which the ears has to be to be centered on the clip.
|
|
radius = ru+(clip_width/2);
|
|
|
|
|
|
// Math time!
|
|
|
|
// The ears are not that bad without this calculation, but I want to improve the base and the join between ears and the clip.
|
|
// Actually, by tilting the ear, a side of the end will go deeper withing the clip, but the other side may be separated from the clip.
|
|
// So we need to translate the ears more deeper within the clip to avoid any separation
|
|
//
|
|
// So! Trigonometry!
|
|
//
|
|
// Viewed from the right of the ear, an ear is like that:
|
|
//
|
|
// A
|
|
// |\
|
|
// | \
|
|
// h | \ s
|
|
// | \
|
|
// +----\ D
|
|
// C l \
|
|
// \
|
|
// \
|
|
// \
|
|
// B
|
|
//
|
|
// A is the side of the ear which is going upper
|
|
// B is the side of the ear which is going deeper
|
|
// C is the clip level
|
|
// D is the midpoint between A and B
|
|
// s is the depth of the ear (from A to B!)
|
|
// h is the heigh we are searching for. We will lower the ear of this size.
|
|
// l is the half of length of the fingerprint of the ear in the clip.
|
|
// ADC is the tilt angle
|
|
// ACD is a 90 degree angle
|
|
//
|
|
// So, to find the h length, we can use s and the angle ADC.
|
|
//
|
|
// CAH => We don't have the adjacent length. So, we can't use this formula
|
|
// SOH => sin(ADC) = h / (s/2)
|
|
// TOA => We don't have the adjacent length. So, we can't use this formula
|
|
//
|
|
// sin(ADC) = h / (s/2)
|
|
// sin(ADC) * (s/2) = h
|
|
//
|
|
// BUT! Since we will raise the Clip level C to the end of the ear A, the print of the ear within the clip will be shifted of `l`!
|
|
// So, let's calculate it!
|
|
//
|
|
//
|
|
// CAH => cos(ADC) = l / (s/2)
|
|
// SOH => Is not targeting what we want.
|
|
// TOA => The opposed side is less precise than the hypothenus, so, we will not use this formula
|
|
//
|
|
// cos(ADC) = l / (s/2)
|
|
// cos(ADC) * (s/2) = l
|
|
|
|
tilt_compensation = sin(ear_tilt) * (ear_depth/2);
|
|
tilt_shift = cos(ear_tilt) * (ear_depth/2);
|
|
|
|
// Pythagoras!
|
|
// Viewed from the top, an ear is like that:
|
|
//
|
|
// A s
|
|
// +----- E
|
|
// | /
|
|
// x | / r
|
|
// | /
|
|
// |/
|
|
// c
|
|
//
|
|
// c is the center of the circle forming the top surface of the clip
|
|
// E is the perfect position of the ear
|
|
// r is the radius, calculated previously
|
|
// s is the half of the space between ears
|
|
// x is the position of the ears on the Y axis. It's what we want to calculate
|
|
// A is the projection of the ears on the Y axis
|
|
// A is a 90 degrees angle
|
|
//
|
|
// x**2 + s**2 = r**2
|
|
// x**2 = r**2 - s**2
|
|
// x = sqrt( r**2 - s**2 )
|
|
s = space_between_ears / 2;
|
|
pos_ears_yaxis = sqrt(pow(radius, 2) - pow(s, 2));
|
|
|
|
// Trigonometry!
|
|
// Now, lets, rotate the ears to be at tangent to the clip
|
|
//
|
|
// From the top, an ear is like this:
|
|
//
|
|
// A s
|
|
// +------- E
|
|
// | /
|
|
// | /
|
|
// x | / r
|
|
// | /
|
|
// | /
|
|
// | /
|
|
// |/
|
|
// C
|
|
//
|
|
// E is the position of the ears
|
|
// C is the center of the clip
|
|
// A is the projection of the ears on the Y axis
|
|
// r is the radius
|
|
// s is the half of the space between the ears.
|
|
// x is the same from the last figure.
|
|
// A is a 90 degrees angle
|
|
//
|
|
// The angle of the ear is the same as the angle ACE.
|
|
// So, we need to calculate this angle
|
|
//
|
|
// Since, we already know every lengths s, r and x, we can choose the formula we want!
|
|
// IDK which one is faster, but that could be a nice optimization.
|
|
//
|
|
// CAH => cos(ACE) = x/r
|
|
// SOH => sin(ACE) = s/r
|
|
// TOA => tan(ACE) = x/s
|
|
//
|
|
// Let's choose the sine, since it's linked to the our best raw non-rounded values. It will give us values with the best accuracy.
|
|
ears_angle = asin(s/radius);
|
|
|
|
// Like that, it's good enough. And it could be committed like that. Actually, my first model (never published it) was like that.
|
|
// BUT we can do better and smarter! (and we will probably need to refine it)
|
|
|
|
// If we stop our math here, we centered the middle of the ear on the clip. But the end of the ears are NOT centered.
|
|
//
|
|
// So, we will use (again) Pythagoras!
|
|
// We want to position the ear (on its center) to put the end of the ear in the radius.
|
|
//
|
|
// Form the top, an ear looks like that:
|
|
// e
|
|
// /|
|
|
// / |
|
|
// / |
|
|
// r / | h
|
|
// / |
|
|
// / |
|
|
// / |
|
|
// C /-------+ E
|
|
// p
|
|
//
|
|
// C is the center of the clip
|
|
// e is the end of the ear
|
|
// E is the middle of the ear.
|
|
// r is the Radius
|
|
// h is the half of the width of the ear
|
|
// E is a 90 degrees angles
|
|
// p is wanted length to position correctly the center of the ear.
|
|
//
|
|
// h**2 + p**2 = r**2
|
|
// p**2 = r**2 - h**2
|
|
// p = sqrt(r**2 - h**2)
|
|
|
|
center_radius = sqrt( pow(radius, 2) - pow((ear_side_len+(tilt_shift))/2, 2) );
|
|
|
|
// So, we need to update the projection of the ears on the Y axis, based on center_radius, instead of radius.
|
|
pos_ears_yaxis_end_ear = sqrt(pow(center_radius, 2) - pow(s, 2));
|
|
|
|
translate([0, -pos_ears_yaxis_end_ear, ht-tilt_compensation-(ear_thickness/2)])
|
|
rotate(90, [0, 0, 1])
|
|
rotate(90, [0, 1, 0])
|
|
union() {
|
|
scale([1, 1 ,1])
|
|
translate([0, space_between_ears/2, 0])
|
|
rotate(ears_angle, [1, 0, 0])
|
|
rotate(-ear_tilt, [0, 1, 0])
|
|
ear(
|
|
depth=ear_depth,
|
|
thickness=ear_thickness,
|
|
side_len=ear_side_len,
|
|
bend_factor=ear_bend_factor,
|
|
stretch_factor=ear_stretch_factor,
|
|
chamfer=ear_chamfer,
|
|
chamfer_shape=ear_chamfer_shape,
|
|
details=ear_details
|
|
);
|
|
scale([1, -1, 1])
|
|
translate([0, space_between_ears/2, 0])
|
|
rotate(ears_angle, [1, 0, 0])
|
|
rotate(-ear_tilt, [0, 1, 0])
|
|
ear(
|
|
depth=ear_depth,
|
|
thickness=ear_thickness,
|
|
side_len=ear_side_len,
|
|
bend_factor=ear_bend_factor,
|
|
stretch_factor=ear_stretch_factor,
|
|
chamfer=ear_chamfer,
|
|
chamfer_shape=ear_chamfer_shape,
|
|
details=ear_details
|
|
);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Module that creates an ear shape.
|
|
*
|
|
* Parameters:
|
|
*
|
|
* depth: the depth of the ear
|
|
* thickness: the thickness of the ear arcs
|
|
* side_len: the length of one side of the ear base triangle
|
|
* bend_factor: how much the ear is bent. 1 = half circle, 0.00001 = almost straight
|
|
* stretch_factor: how much the ear is stretched, useful for fox ears or this kind of shapes
|
|
*
|
|
* chamfer: size of the chamfer to apply to the edges
|
|
* chamfer_shape: The shape of the chamfer: "cone", "curve", "curve-in", "pyramid", maybe some others
|
|
* details: whether to chamfer also the partial arcs
|
|
*
|
|
* By default, this module creates an ear.
|
|
*
|
|
* I don't remember the original author of this module. I refactored it and improved it a bit. Documentation is from me.
|
|
*/
|
|
module ear(depth, thickness, side_len=30, bend_factor=0.5, stretch_factor=1.2, chamfer=1, chamfer_shape="curve", details=true) {
|
|
depth = depth == undef ? 20 : depth ;
|
|
thickness = thickness == undef ? 3 : thickness ;
|
|
|
|
echo("Generating ONE single ear",
|
|
depth = depth,
|
|
thickness = thickness,
|
|
side_len = side_len,
|
|
bend_factor = bend_factor,
|
|
stretch_factor = stretch_factor,
|
|
chamfer = chamfer,
|
|
chamfer_shape = chamfer_shape,
|
|
details = details
|
|
);
|
|
|
|
$A=[0, side_len/2];
|
|
$B=[0,-side_len/2];
|
|
$C=[-(side_len/2/sin(120))*1.5*stretch_factor, 0];
|
|
$c=sqrt(pow($A.x-$B.x, 2)+pow($A.y-$B.y, 2));
|
|
$b=sqrt(pow($A.x-$C.x, 2)+pow($A.y-$C.y, 2));
|
|
$a=sqrt(pow($C.x-$B.x, 2)+pow($C.y-$B.y, 2));
|
|
$hc=-$C.x;
|
|
$alpha=asin($hc/$b);
|
|
$beta=$alpha;
|
|
$gamma=180-$alpha-$beta;
|
|
$delta=180*bend_factor;
|
|
$bend_radius=$a/(2*cos(90-$delta/2));
|
|
$bend_offset=$bend_radius*sin(90-$delta/2);
|
|
|
|
translate([0, -$c/2, 0])
|
|
rotate($beta, [0, 0, 1])
|
|
translate([0, $a/2, 0])
|
|
translate([$bend_offset, 0, 0])
|
|
color("#00ffff")
|
|
chamfer(size=(details)?chamfer:0, child_h=depth, child_bot=-depth/2, shape=chamfer_shape)
|
|
partial_ring(
|
|
part=$delta/360,
|
|
radius=$bend_radius,
|
|
thickness=thickness,
|
|
height=depth
|
|
);
|
|
translate([0, $c/2, 0])
|
|
rotate(-$alpha, [0, 0, 1])
|
|
translate([0, -$b/2, 0])
|
|
translate([$bend_offset, 0, 0])
|
|
color("#ff00ff")
|
|
chamfer(size=(details)?chamfer:0, child_h=depth, child_bot=-depth/2, shape=chamfer_shape)
|
|
partial_ring(
|
|
part=$delta/360,
|
|
radius=$bend_radius,
|
|
thickness=thickness,
|
|
height=depth
|
|
);
|
|
translate($A) color("#aaaaaa")
|
|
chamfer(size=chamfer, child_h=depth, child_bot=-depth/2, shape=chamfer_shape)
|
|
cylinder(h=depth, d=thickness, center=true);
|
|
translate($B) color("#bbbbbb")
|
|
chamfer(size=chamfer, child_h=depth, child_bot=-depth/2, shape=chamfer_shape)
|
|
cylinder(h=depth, d=thickness, center=true);
|
|
translate($C) color("#cccccc")
|
|
chamfer(size=chamfer, child_h=depth, child_bot=-depth/2, shape=chamfer_shape)
|
|
cylinder(h=depth, d=thickness, center=true);
|
|
}
|
|
|
|
/**
|
|
* This module is not mine.
|
|
*/
|
|
module partial_ring(part, radius, thickness, height) {
|
|
rotate(180-180*part, [0, 0, 1])
|
|
rotate_extrude(angle=360*part)
|
|
translate([radius, 0])
|
|
square([thickness, height], center=true);
|
|
}
|
|
|
|
/**
|
|
* This module is not mine.
|
|
*/
|
|
module chamfer(size=2, child_h=5, child_bot=0, shape="curve") {
|
|
chamfer_size=size;
|
|
|
|
module chamfer_shape() {
|
|
if (shape == "cone") {
|
|
$fn=16;
|
|
cylinder(chamfer_size/2,chamfer_size/2,0);
|
|
} else if (shape == "curve") {
|
|
$fn=4;
|
|
for( y = [0:1/$fn:1]) {
|
|
cylinder(chamfer_size/2*(1-y),chamfer_size/2/cos(180/$fn)*y,0);
|
|
}
|
|
} else if (shape == "curve-in") {
|
|
$fn=16;
|
|
intersection() {
|
|
sphere(chamfer_size/2/cos(180/$fn));
|
|
translate([0,0,chamfer_size/2])
|
|
cube(chamfer_size, center=true);
|
|
}
|
|
} else if (shape == "pyramid") {
|
|
$fn=4;
|
|
cylinder(chamfer_size/2/cos(180/$fn),chamfer_size/2,0);
|
|
}
|
|
}
|
|
|
|
module lower_chamfer() {
|
|
minkowski()
|
|
{
|
|
linear_extrude(0.0001) difference() {
|
|
square([1000,1000],center=true);
|
|
projection()children(0);
|
|
}
|
|
chamfer_shape();
|
|
}
|
|
}
|
|
|
|
module upper_chamfer() {
|
|
scale([1,1,-1])lower_chamfer()children();
|
|
}
|
|
|
|
render()difference() {
|
|
children();
|
|
translate([0,0,child_bot])lower_chamfer()children();
|
|
translate([0,0,child_bot+child_h])upper_chamfer()children();
|
|
}
|
|
}
|