ffffng/app/bower_components/geolib/geolib.js
2022-08-02 15:24:19 +02:00

1069 lines
28 KiB
JavaScript

/*! geolib 1.3.5 by Manuel Bieh
* A growing library to provide some basic geo functions like distance calculation,
* conversion of decimal coordinates to sexagesimal and vice versa, etc.
* WGS 84 (World Geodetic System 1984)
*
* @author Manuel Bieh
* @url http://www.manuelbieh.com/
* @version 1.3.5
* @license LGPL
**//*global console:true geolib:true require:true module:true window:true global:true define:true*/
(function (global, undefined) {
var radius = 6378137; // Earth radius
var sexagesimalPattern = /^([0-9]{1,3})°\s*([0-9]{1,3})'\s*(([0-9]{1,3}(\.([0-9]{1,2}))?)"\s*)?([NEOSW]?)$/;
var MIN_LAT = -90;
var MAX_LAT = 90;
var MIN_LON = -180;
var MAX_LON = 180;
var geolib = {
decimal: {},
sexagesimal: {},
distance: 0,
measures: {
m: 1,
km: 0.001,
cm: 100,
mm: 1000,
mi: (1 / 1609.344),
sm: (1 / 1852.216),
ft: (100 / 30.48),
"in": (100 / 2.54),
yd: (1 / 0.9144)
},
/**
* Get the key names for a geo point.
*
* @param object Point position {latitude: 123, longitude: 123, elevation: 123}
* @return object {
* longitude: 'lng|long|longitude',
* latitude: 'lat|latitude',
* elevation: 'alt|altitude|elev|elevation'
* }
*/
getKeys: function(point) {
var latitude = point.hasOwnProperty('lat') ? 'lat' : 'latitude';
var longitude = (point.hasOwnProperty('lng') ? 'lng' : false) ||
(point.hasOwnProperty('long') ? 'long' : false) ||
'longitude';
var elevation = (point.hasOwnProperty('alt') ? 'alt' : false) ||
(point.hasOwnProperty('altitude') ? 'altitude' : false) ||
(point.hasOwnProperty('elev') ? 'elev' : false) ||
'elevation';
return {
latitude: latitude,
longitude: longitude,
elevation: elevation
};
},
/**
* Calculates geodetic distance between two points specified by latitude/longitude using
* Vincenty inverse formula for ellipsoids
* Vincenty Inverse Solution of Geodesics on the Ellipsoid (c) Chris Veness 2002-2010
* (Licensed under CC BY 3.0)
*
* @param object Start position {latitude: 123, longitude: 123}
* @param object End position {latitude: 123, longitude: 123}
* @param integer Accuracy (in meters)
* @return integer Distance (in meters)
*/
getDistance: function(start, end, accuracy) {
var keys = geolib.getKeys(start);
var latitude = keys.latitude;
var longitude = keys.longitude;
var elevation = keys.elevation;
accuracy = Math.floor(accuracy) || 1;
var coord1 = {}, coord2 = {};
coord1[latitude] = geolib.useDecimal(start[latitude]);
coord1[longitude] = geolib.useDecimal(start[longitude]);
coord2[latitude] = geolib.useDecimal(end[latitude]);
coord2[longitude] = geolib.useDecimal(end[longitude]);
var a = 6378137, b = 6356752.314245, f = 1/298.257223563; // WGS-84 ellipsoid params
var L = (coord2[longitude]-coord1[longitude]).toRad();
var cosSigma, sigma, sinAlpha, cosSqAlpha, cos2SigmaM, sinSigma;
var U1 = Math.atan((1-f) * Math.tan(parseFloat(coord1[latitude]).toRad()));
var U2 = Math.atan((1-f) * Math.tan(parseFloat(coord2[latitude]).toRad()));
var sinU1 = Math.sin(U1), cosU1 = Math.cos(U1);
var sinU2 = Math.sin(U2), cosU2 = Math.cos(U2);
var lambda = L, lambdaP, iterLimit = 100;
do {
var sinLambda = Math.sin(lambda), cosLambda = Math.cos(lambda);
sinSigma = (
Math.sqrt(
(
cosU2 * sinLambda
) * (
cosU2 * sinLambda
) + (
cosU1 * sinU2 - sinU1 * cosU2 * cosLambda
) * (
cosU1 * sinU2 - sinU1 * cosU2 * cosLambda
)
)
);
if (sinSigma === 0) {
return geolib.distance = 0; // co-incident points
}
cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda;
sigma = Math.atan2(sinSigma, cosSigma);
sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
cosSqAlpha = 1 - sinAlpha * sinAlpha;
cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha;
if (isNaN(cos2SigmaM)) {
cos2SigmaM = 0; // equatorial line: cosSqAlpha=0 (§6)
}
var C = (
f / 16 * cosSqAlpha * (
4 + f * (
4 - 3 * cosSqAlpha
)
)
);
lambdaP = lambda;
lambda = (
L + (
1 - C
) * f * sinAlpha * (
sigma + C * sinSigma * (
cos2SigmaM + C * cosSigma * (
-1 + 2 * cos2SigmaM * cos2SigmaM
)
)
)
);
} while (Math.abs(lambda-lambdaP) > 1e-12 && --iterLimit>0);
if (iterLimit === 0) {
return NaN; // formula failed to converge
}
var uSq = (
cosSqAlpha * (
a * a - b * b
) / (
b*b
)
);
var A = (
1 + uSq / 16384 * (
4096 + uSq * (
-768 + uSq * (
320 - 175 * uSq
)
)
)
);
var B = (
uSq / 1024 * (
256 + uSq * (
-128 + uSq * (
74-47 * uSq
)
)
)
);
var deltaSigma = (
B * sinSigma * (
cos2SigmaM + B / 4 * (
cosSigma * (
-1 + 2 * cos2SigmaM * cos2SigmaM
) -B / 6 * cos2SigmaM * (
-3 + 4 * sinSigma * sinSigma
) * (
-3 + 4 * cos2SigmaM * cos2SigmaM
)
)
)
);
var distance = b * A * (sigma - deltaSigma);
distance = distance.toFixed(3); // round to 1mm precision
if (start.hasOwnProperty(elevation) && end.hasOwnProperty(elevation)) {
var climb = Math.abs(start[elevation] - end[elevation]);
distance = Math.sqrt(distance*distance + climb*climb);
}
return geolib.distance = Math.floor(Math.round(distance/accuracy)*accuracy);
/*
// note: to return initial/final bearings in addition to distance, use something like:
var fwdAz = Math.atan2(cosU2*sinLambda, cosU1*sinU2-sinU1*cosU2*cosLambda);
var revAz = Math.atan2(cosU1*sinLambda, -sinU1*cosU2+cosU1*sinU2*cosLambda);
return { distance: s, initialBearing: fwdAz.toDeg(), finalBearing: revAz.toDeg() };
*/
},
/**
* Calculates the distance between two spots.
* This method is more simple but also more inaccurate
*
* @param object Start position {latitude: 123, longitude: 123}
* @param object End position {latitude: 123, longitude: 123}
* @param integer Accuracy (in meters)
* @return integer Distance (in meters)
*/
getDistanceSimple: function(start, end, accuracy) {
var keys = geolib.getKeys(start);
var latitude = keys.latitude;
var longitude = keys.longitude;
accuracy = Math.floor(accuracy) || 1;
var coord1 = {}, coord2 = {};
coord1[latitude] = parseFloat(geolib.useDecimal(start[latitude])).toRad();
coord1[longitude] = parseFloat(geolib.useDecimal(start[longitude])).toRad();
coord2[latitude] = parseFloat(geolib.useDecimal(end[latitude])).toRad();
coord2[longitude] = parseFloat(geolib.useDecimal(end[longitude])).toRad();
var distance =
Math.round(
Math.acos(
Math.sin(
coord2[latitude]
) *
Math.sin(
coord1[latitude]
) +
Math.cos(
coord2[latitude]
) *
Math.cos(
coord1[latitude]
) *
Math.cos(
coord1[longitude] - coord2[longitude]
)
) * radius
);
return geolib.distance = Math.floor(Math.round(distance/accuracy)*accuracy);
},
/**
* Calculates the center of a collection of geo coordinates
*
* @param array Collection of coords [{latitude: 51.510, longitude: 7.1321}, {latitude: 49.1238, longitude: "8° 30' W"}, ...]
* @return object {latitude: centerLat, longitude: centerLng, distance: diagonalDistance}
*/
getCenter: function(coords) {
if (!coords.length) {
return false;
}
var keys = geolib.getKeys(coords[0]);
var latitude = keys.latitude;
var longitude = keys.longitude;
var max = function( array ){
return Math.max.apply( Math, array );
};
var min = function( array ){
return Math.min.apply( Math, array );
};
var lat, lng, splitCoords = {lat: [], lng: []};
for(var coord in coords) {
splitCoords.lat.push(geolib.useDecimal(coords[coord][latitude]));
splitCoords.lng.push(geolib.useDecimal(coords[coord][longitude]));
}
var minLat = min(splitCoords.lat);
var minLng = min(splitCoords.lng);
var maxLat = max(splitCoords.lat);
var maxLng = max(splitCoords.lng);
lat = ((minLat + maxLat)/2).toFixed(6);
lng = ((minLng + maxLng)/2).toFixed(6);
// distance from the deepest left to the highest right point (diagonal distance)
var distance = geolib.convertUnit('km', geolib.getDistance({lat:minLat, lng:minLng}, {lat:maxLat, lng:maxLng}));
return {"latitude": lat, "longitude": lng, "distance": distance};
},
/**
* Gets the max and min, latitude, longitude, and elevation (if provided).
* @param array array with coords e.g. [{latitude: 51.5143, longitude: 7.4138}, {latitude: 123, longitude: 123}, ...]
* @return object {maxLat: maxLat,
* minLat: minLat
* maxLng: maxLng,
* minLng: minLng,
* maxElev: maxElev,
* minElev: minElev}
*/
getBounds: function(coords) {
if (!coords.length) {
return false;
}
var keys = geolib.getKeys(coords[0]);
var latitude = keys.latitude;
var longitude = keys.longitude;
var elevation = keys.elevation;
var useElevation = coords[0].hasOwnProperty(elevation);
var stats = {
maxLat: -Infinity,
minLat: Infinity,
maxLng: -Infinity,
minLng: Infinity
};
if (useElevation) {
stats.maxElev = 0;
stats.minElev = Infinity;
}
for (var i = 0, l = coords.length; i < l; ++i) {
stats.maxLat = Math.max(coords[i][latitude], stats.maxLat);
stats.minLat = Math.min(coords[i][latitude], stats.minLat);
stats.maxLng = Math.max(coords[i][longitude], stats.maxLng);
stats.minLng = Math.min(coords[i][longitude], stats.minLng);
if (useElevation) {
stats.maxElev = Math.max(coords[i][elevation], stats.maxElev);
stats.minElev = Math.min(coords[i][elevation], stats.minElev);
}
}
return stats;
},
/**
* Computes the bounding coordinates of all points on the surface
* of the earth less than or equal to the specified great circle
* distance.
*
* @param object Point position {latitude: 123, longitude: 123}
* @param number Distance (in meters).
* @return array Collection of two points defining the SW and NE corners.
*/
getBoundsOfDistance: function(point, distance) {
var keys = geolib.getKeys(point);
var latitude = keys.latitude;
var longitude = keys.longitude;
var coord = {};
coord[latitude] = geolib.useDecimal(point[latitude]);
coord[longitude] = geolib.useDecimal(point[longitude]);
var radLat = coord[latitude].toRad();
var radLon = coord[longitude].toRad();
var radDist = distance / radius;
var minLat = radLat - radDist;
var maxLat = radLat + radDist;
var MAX_LAT_RAD = MAX_LAT.toRad();
var MIN_LAT_RAD = MIN_LAT.toRad();
var MAX_LON_RAD = MAX_LON.toRad();
var MIN_LON_RAD = MIN_LON.toRad();
var minLon, maxLon;
if (minLat > MIN_LAT_RAD && maxLat < MAX_LAT_RAD) {
var deltaLon = Math.asin(Math.sin(radDist) / Math.cos(radLat));
minLon = radLon - deltaLon;
if (minLon < MIN_LON_RAD) {
minLon += 2 * Math.PI;
}
maxLon = radLon + deltaLon;
if (maxLon > MAX_LON_RAD) {
maxLon -= 2 * Math.PI;
}
} else {
// A pole is within the distance.
minLat = Math.max(minLat, MIN_LAT_RAD);
maxLat = Math.min(maxLat, MAX_LAT_RAD);
minLon = MIN_LON_RAD;
maxLon = MAX_LON_RAD;
}
return [
// Southwest
{"latitude": minLat.toDeg(), "longitude": minLon.toDeg()},
// Northeast
{"latitude": maxLat.toDeg(), "longitude": maxLon.toDeg()}
];
},
/**
* Checks whether a point is inside of a polygon or not.
* Note that the polygon coords must be in correct order!
*
* @param object coordinate to check e.g. {latitude: 51.5023, longitude: 7.3815}
* @param array array with coords e.g. [{latitude: 51.5143, longitude: 7.4138}, {latitude: 123, longitude: 123}, ...]
* @return bool true if the coordinate is inside the given polygon
*/
isPointInside: function(latlng, coords) {
var keys = geolib.getKeys(latlng);
var latitude = keys.latitude;
var longitude = keys.longitude;
for(var c = false, i = -1, l = coords.length, j = l - 1; ++i < l; j = i) {
if(
(
(coords[i][longitude] <= latlng[longitude] && latlng[longitude] < coords[j][longitude]) ||
(coords[j][longitude] <= latlng[longitude] && latlng[longitude] < coords[i][longitude])
) &&
(
latlng[latitude] < (coords[j][latitude] - coords[i][latitude]) *
(latlng[longitude] - coords[i][longitude]) /
(coords[j][longitude] - coords[i][longitude]) +
coords[i][latitude]
)
) {
c = !c;
}
}
return c;
},
/**
* Shortcut for geolib.isPointInside()
*/
isInside: function() {
return geolib.isPointInside.apply(geolib, arguments);
},
/**
* Checks whether a point is inside of a circle or not.
*
* @param object coordinate to check (e.g. {latitude: 51.5023, longitude: 7.3815})
* @param object coordinate of the circle's center (e.g. {latitude: 51.4812, longitude: 7.4025})
* @param integer maximum radius in meters
* @return bool true if the coordinate is inside the given radius
*/
isPointInCircle: function(latlng, center, radius) {
return geolib.getDistance(latlng, center) < radius;
},
/**
* Shortcut for geolib.isPointInCircle()
*/
withinRadius: function() {
return geolib.isPointInCircle.apply(geolib, arguments);
},
/**
* Gets rhumb line bearing of two points. Find out about the difference between rhumb line and
* great circle bearing on Wikipedia. It's quite complicated. Rhumb line should be fine in most cases:
*
* http://en.wikipedia.org/wiki/Rhumb_line#General_and_mathematical_description
*
* Function heavily based on Doug Vanderweide's great PHP version (licensed under GPL 3.0)
* http://www.dougv.com/2009/07/13/calculating-the-bearing-and-compass-rose-direction-between-two-latitude-longitude-coordinates-in-php/
*
* @param object origin coordinate (e.g. {latitude: 51.5023, longitude: 7.3815})
* @param object destination coordinate
* @return integer calculated bearing
*/
getRhumbLineBearing: function(originLL, destLL) {
var keys = geolib.getKeys(originLL);
var latitude = keys.latitude;
var longitude = keys.longitude;
// difference of longitude coords
var diffLon = geolib.useDecimal(destLL[longitude]).toRad() - geolib.useDecimal(originLL[longitude]).toRad();
// difference latitude coords phi
var diffPhi = Math.log(Math.tan(geolib.useDecimal(destLL[latitude]).toRad() / 2 + Math.PI / 4) / Math.tan(geolib.useDecimal(originLL[latitude]).toRad() / 2 + Math.PI / 4));
// recalculate diffLon if it is greater than pi
if(Math.abs(diffLon) > Math.PI) {
if(diffLon > 0) {
diffLon = (2 * Math.PI - diffLon) * -1;
}
else {
diffLon = 2 * Math.PI + diffLon;
}
}
//return the angle, normalized
return (Math.atan2(diffLon, diffPhi).toDeg() + 360) % 360;
},
/**
* Gets great circle bearing of two points. See description of getRhumbLineBearing for more information
*
* @param object origin coordinate (e.g. {latitude: 51.5023, longitude: 7.3815})
* @param object destination coordinate
* @return integer calculated bearing
*/
getBearing: function(originLL, destLL) {
var keys = geolib.getKeys(originLL);
var latitude = keys.latitude;
var longitude = keys.longitude;
destLL[latitude] = geolib.useDecimal(destLL[latitude]);
destLL[longitude] = geolib.useDecimal(destLL[longitude]);
originLL[latitude] = geolib.useDecimal(originLL[latitude]);
originLL[longitude] = geolib.useDecimal(originLL[longitude]);
var bearing = (
(
Math.atan2(
Math.sin(
destLL[longitude].toRad() -
originLL[longitude].toRad()
) *
Math.cos(
destLL[latitude].toRad()
),
Math.cos(
originLL[latitude].toRad()
) *
Math.sin(
destLL[latitude].toRad()
) -
Math.sin(
originLL[latitude].toRad()
) *
Math.cos(
destLL[latitude].toRad()
) *
Math.cos(
destLL[longitude].toRad() - originLL[longitude].toRad()
)
)
).toDeg() + 360
) % 360;
return bearing;
},
/**
* Gets the compass direction from an origin coordinate to a destination coordinate.
*
* @param object origin coordinate (e.g. {latitude: 51.5023, longitude: 7.3815})
* @param object destination coordinate
* @param string Bearing mode. Can be either circle or rhumbline
* @return object Returns an object with a rough (NESW) and an exact direction (NNE, NE, ENE, E, ESE, etc).
*/
getCompassDirection: function(originLL, destLL, bearingMode) {
var direction, bearing;
if(bearingMode == 'circle') { // use great circle bearing
bearing = geolib.getBearing(originLL, destLL);
} else { // default is rhumb line bearing
bearing = geolib.getRhumbLineBearing(originLL, destLL);
}
switch(Math.round(bearing/22.5)) {
case 1:
direction = {exact: "NNE", rough: "N"};
break;
case 2:
direction = {exact: "NE", rough: "N"};
break;
case 3:
direction = {exact: "ENE", rough: "E"};
break;
case 4:
direction = {exact: "E", rough: "E"};
break;
case 5:
direction = {exact: "ESE", rough: "E"};
break;
case 6:
direction = {exact: "SE", rough: "E"};
break;
case 7:
direction = {exact: "SSE", rough: "S"};
break;
case 8:
direction = {exact: "S", rough: "S"};
break;
case 9:
direction = {exact: "SSW", rough: "S"};
break;
case 10:
direction = {exact: "SW", rough: "S"};
break;
case 11:
direction = {exact: "WSW", rough: "W"};
break;
case 12:
direction = {exact: "W", rough: "W"};
break;
case 13:
direction = {exact: "WNW", rough: "W"};
break;
case 14:
direction = {exact: "NW", rough: "W"};
break;
case 15:
direction = {exact: "NNW", rough: "N"};
break;
default:
direction = {exact: "N", rough: "N"};
}
direction['bearing'] = bearing;
return direction;
},
/**
* Shortcut for getCompassDirection
*/
getDirection: function(originLL, destLL, bearingMode) {
return geolib.getCompassDirection.apply(geolib, arguments);
},
/**
* Sorts an array of coords by distance from a reference coordinate
*
* @param object reference coordinate e.g. {latitude: 51.5023, longitude: 7.3815}
* @param mixed array or object with coords [{latitude: 51.5143, longitude: 7.4138}, {latitude: 123, longitude: 123}, ...]
* @return array ordered array
*/
orderByDistance: function(latlng, coords) {
var keys = geolib.getKeys(latlng);
var latitude = keys.latitude;
var longitude = keys.longitude;
var coordsArray = [];
for(var coord in coords) {
var d = geolib.getDistance(latlng, coords[coord]);
coordsArray.push({
key: coord, latitude: coords[coord][latitude],
longitude: coords[coord][longitude], distance: d
});
}
return coordsArray.sort(function(a, b) { return a.distance - b.distance; });
},
/**
* Finds the nearest coordinate to a reference coordinate
*
* @param object reference coordinate e.g. {latitude: 51.5023, longitude: 7.3815}
* @param mixed array or object with coords [{latitude: 51.5143, longitude: 7.4138}, {latitude: 123, longitude: 123}, ...]
* @return array ordered array
*/
findNearest: function(latlng, coords, offset) {
offset = offset || 0;
var ordered = geolib.orderByDistance(latlng, coords);
return ordered[offset];
},
/**
* Calculates the length of a given path
*
* @param mixed array or object with coords [{latitude: 51.5143, longitude: 7.4138}, {latitude: 123, longitude: 123}, ...]
* @return integer length of the path (in meters)
*/
getPathLength: function(coords) {
var dist = 0, last;
for (var i = 0, l = coords.length; i < l; ++i) {
if(last) {
dist += geolib.getDistance(coords[i], last);
}
last = coords[i];
}
return dist;
},
/**
* Calculates the speed between to points within a given time span.
*
* @param object coords with javascript timestamp {latitude: 51.5143, longitude: 7.4138, time: 1360231200880}
* @param object coords with javascript timestamp {latitude: 51.5502, longitude: 7.4323, time: 1360245600460}
* @param object options (currently "unit" is the only option. Default: km(h));
* @return float speed in *unit* per hour
*/
getSpeed: function(start, end, options) {
var unit = options && options.unit || 'km';
if(unit == 'mph') {
unit = 'mi';
} else if(unit == 'kmh') {
unit = 'km';
}
var distance = geolib.getDistance(start, end);
var time = ((end.time*1)/1000) - ((start.time*1)/1000);
var mPerHr = (distance/time)*3600;
var speed = Math.round(mPerHr * geolib.measures[unit] * 10000)/10000;
return speed;
},
/**
* Converts a distance from meters to km, mm, cm, mi, ft, in or yd
*
* @param string Format to be converted in
* @param float Distance in meters
* @param float Decimal places for rounding (default: 4)
* @return float Converted distance
*/
convertUnit: function(unit, distance, round) {
if(distance === 0 || typeof distance == 'undefined') {
if(geolib.distance === 0) {
// throw 'No distance given.';
return 0;
} else {
distance = geolib.distance;
}
}
unit = unit || 'm';
round = (null == round ? 4 : round);
if(typeof geolib.measures[unit] !== 'undefined') {
return geolib.round(distance * geolib.measures[unit], round);
} else {
throw new Error('Unknown unit for conversion.');
}
},
/**
* Checks if a value is in decimal format or, if neccessary, converts to decimal
*
* @param mixed Value to be checked/converted
* @return float Coordinate in decimal format
*/
useDecimal: function(value) {
value = value.toString().replace(/\s*/, '');
// looks silly but works as expected
// checks if value is in decimal format
if (!isNaN(parseFloat(value)) && parseFloat(value) == value) {
return parseFloat(value);
// checks if it's sexagesimal format (HHH° MM' SS" (NESW))
} else if(geolib.isSexagesimal(value) === true) {
return parseFloat(geolib.sexagesimal2decimal(value));
} else {
throw 'Unknown format.';
}
},
/**
* Converts a decimal coordinate value to sexagesimal format
*
* @param float decimal
* @return string Sexagesimal value (XX° YY' ZZ")
*/
decimal2sexagesimal: function(dec) {
if (dec in geolib.sexagesimal) {
return geolib.sexagesimal[dec];
}
var tmp = dec.toString().split('.');
var deg = Math.abs(tmp[0]);
var min = ('0.' + tmp[1])*60;
var sec = min.toString().split('.');
min = Math.floor(min);
sec = (('0.' + sec[1]) * 60).toFixed(2);
geolib.sexagesimal[dec] = (deg + '° ' + min + "' " + sec + '"');
return geolib.sexagesimal[dec];
},
/**
* Converts a sexagesimal coordinate to decimal format
*
* @param float Sexagesimal coordinate
* @return string Decimal value (XX.XXXXXXXX)
*/
sexagesimal2decimal: function(sexagesimal) {
if (sexagesimal in geolib.decimal) {
return geolib.decimal[sexagesimal];
}
var regEx = new RegExp(sexagesimalPattern);
var data = regEx.exec(sexagesimal);
var min = 0, sec = 0;
if(data) {
min = parseFloat(data[2]/60);
sec = parseFloat(data[4]/3600) || 0;
}
var dec = ((parseFloat(data[1]) + min + sec)).toFixed(8);
// South and West are negative decimals
dec = (data[7] == 'S' || data[7] == 'W') ? dec * -1 : dec;
geolib.decimal[sexagesimal] = dec;
return dec;
},
/**
* Checks if a value is in sexagesimal format
*
* @param string Value to be checked
* @return bool True if in sexagesimal format
*/
isSexagesimal: function(value) {
return sexagesimalPattern.test(value);
},
round: function(value, n) {
var decPlace = Math.pow(10, n);
return Math.round(value * decPlace)/decPlace;
}
};
/* Optional elevation addon requires Googlemaps API JS */
/*global google:true geolib:true require:true module:true elevationResult*/
/**
* @param Array Collection of coords [{latitude: 51.510, longitude: 7.1321}, {latitude: 49.1238, longitude: "8° 30' W"}, ...]
*
* @return Array [{lat:#lat, lng:#lng, elev:#elev},....]}
*/
geolib.getElevation = function() {
if (typeof window.navigator !== 'undefined') {
geolib.getElevationClient.apply(this, arguments);
} else {
geolib.getElevationServer.apply(this, arguments);
}
};
geolib.getElevationClient = function(coords, cb) {
if (!window.google) {
throw new Error("Google maps api not loaded");
}
if (coords.length === 0) {
return cb(null, null);
}
if (coords.length === 1) {
return cb(new Error("getElevation requires at least 2 points."));
}
var path = [];
var keys = geolib.getKeys(coords[0]);
var latitude = keys.latitude;
var longitude = keys.longitude;
for(var i = 0; i < coords.length; i++) {
path.push(new google.maps.LatLng(
geolib.useDecimal(coords[i][latitude]),
geolib.useDecimal(coords[i][longitude])
));
}
var positionalRequest = {
'path': path,
'samples': path.length
};
var elevationService = new google.maps.ElevationService();
elevationService.getElevationAlongPath(positionalRequest,function (results, status) {
geolib.elevationHandler(results, status, coords, keys, cb);
});
};
geolib.getElevationServer = function(coords, cb) {
if (coords.length === 0) {
return cb(null, null);
}
if (coords.length === 1) {
return cb(new Error("getElevation requires at least 2 points."));
}
var gm = require('googlemaps');
var path = [];
var keys = geolib.getKeys(coords[0]);
//coords[0]
var latitude = keys.latitude;
var longitude = keys.longitude;
for(var i = 0; i < coords.length; i++) {
path.push(geolib.useDecimal(coords[i][latitude]) + ',' +
geolib.useDecimal(coords[i][longitude]));
}
gm.elevationFromPath(path.join('|'), path.length, function(err, results) {
geolib.elevationHandler(results.results, results.status, coords, keys, cb);
});
},
geolib.elevationHandler = function(results, status, coords, keys, cb){
var latsLngsElevs = [];
var latitude = keys.latitude;
var longitude = keys.longitude;
if (status == "OK" ) {
for (var i = 0; i < results.length; i++) {
latsLngsElevs.push({
"lat":coords[i][latitude],
"lng":coords[i][longitude],
"elev":results[i].elevation
});
}
cb(null, latsLngsElevs);
} else {
cb(new Error("Could not get elevation using Google's API"), elevationResult.status);
}
};
/**
* @param Array [{lat:#lat, lng:#lng, elev:#elev},....]}
*
* @return Number % grade
*/
geolib.getGrade = function(coords){
var keys = geolib.getKeys(coords[0]);
var elevation = keys.elevation;
var rise = Math.abs(coords[coords.length-1][elevation] - coords[0][elevation]);
var run = geolib.getPathLength(coords);
return Math.floor((rise/run)*100);
};
/**
* @param Array [{lat:#lat, lng:#lng, elev:#elev},....]}
*
* @return Object {gain:#gain, loss:#loss}
*/
geolib.getTotalElevationGainAndLoss = function(coords){
var keys = geolib.getKeys(coords[0]);
var elevation = keys.elevation;
var gain = 0;
var loss = 0;
for(var i = 0; i < coords.length - 1; i++){
var deltaElev = coords[i][elevation] - coords[i + 1][elevation];
if (deltaElev > 0) {
loss += deltaElev;
} else {
gain += Math.abs(deltaElev);
}
}
return {
"gain": gain,
"loss": loss
};
};
if (typeof(Number.prototype.toRad) === "undefined") {
Number.prototype.toRad = function() {
return this * Math.PI / 180;
};
}
if (typeof(Number.prototype.toDeg) === "undefined") {
Number.prototype.toDeg = function() {
return this * 180 / Math.PI;
};
}
/*
// we're in a browser
window.geolib = geolib;
if (typeof module != 'undefined') {
module.exports = geolib;
}
*/
if (typeof module != 'undefined') {
// Node module
global.geolib = module.exports = geolib;
} else if (typeof define === "function" && define.amd) {
// AMD module
define("geolib", [], function () {
return geolib;
});
// what's the difference to:
//define(function() { return geolib; });
// ?
} else {
// we're in a browser, yay
global.geolib = geolib;
}
}(this));