836 lines
22 KiB
JavaScript
836 lines
22 KiB
JavaScript
|
(function(){d3.geom = {};
|
||
|
/**
|
||
|
* Computes a contour for a given input grid function using the <a
|
||
|
* href="http://en.wikipedia.org/wiki/Marching_squares">marching
|
||
|
* squares</a> algorithm. Returns the contour polygon as an array of points.
|
||
|
*
|
||
|
* @param grid a two-input function(x, y) that returns true for values
|
||
|
* inside the contour and false for values outside the contour.
|
||
|
* @param start an optional starting point [x, y] on the grid.
|
||
|
* @returns polygon [[x1, y1], [x2, y2], …]
|
||
|
*/
|
||
|
d3.geom.contour = function(grid, start) {
|
||
|
var s = start || d3_geom_contourStart(grid), // starting point
|
||
|
c = [], // contour polygon
|
||
|
x = s[0], // current x position
|
||
|
y = s[1], // current y position
|
||
|
dx = 0, // next x direction
|
||
|
dy = 0, // next y direction
|
||
|
pdx = NaN, // previous x direction
|
||
|
pdy = NaN, // previous y direction
|
||
|
i = 0;
|
||
|
|
||
|
do {
|
||
|
// determine marching squares index
|
||
|
i = 0;
|
||
|
if (grid(x-1, y-1)) i += 1;
|
||
|
if (grid(x, y-1)) i += 2;
|
||
|
if (grid(x-1, y )) i += 4;
|
||
|
if (grid(x, y )) i += 8;
|
||
|
|
||
|
// determine next direction
|
||
|
if (i === 6) {
|
||
|
dx = pdy === -1 ? -1 : 1;
|
||
|
dy = 0;
|
||
|
} else if (i === 9) {
|
||
|
dx = 0;
|
||
|
dy = pdx === 1 ? -1 : 1;
|
||
|
} else {
|
||
|
dx = d3_geom_contourDx[i];
|
||
|
dy = d3_geom_contourDy[i];
|
||
|
}
|
||
|
|
||
|
// update contour polygon
|
||
|
if (dx != pdx && dy != pdy) {
|
||
|
c.push([x, y]);
|
||
|
pdx = dx;
|
||
|
pdy = dy;
|
||
|
}
|
||
|
|
||
|
x += dx;
|
||
|
y += dy;
|
||
|
} while (s[0] != x || s[1] != y);
|
||
|
|
||
|
return c;
|
||
|
};
|
||
|
|
||
|
// lookup tables for marching directions
|
||
|
var d3_geom_contourDx = [1, 0, 1, 1,-1, 0,-1, 1,0, 0,0,0,-1, 0,-1,NaN],
|
||
|
d3_geom_contourDy = [0,-1, 0, 0, 0,-1, 0, 0,1,-1,1,1, 0,-1, 0,NaN];
|
||
|
|
||
|
function d3_geom_contourStart(grid) {
|
||
|
var x = 0,
|
||
|
y = 0;
|
||
|
|
||
|
// search for a starting point; begin at origin
|
||
|
// and proceed along outward-expanding diagonals
|
||
|
while (true) {
|
||
|
if (grid(x,y)) {
|
||
|
return [x,y];
|
||
|
}
|
||
|
if (x === 0) {
|
||
|
x = y + 1;
|
||
|
y = 0;
|
||
|
} else {
|
||
|
x = x - 1;
|
||
|
y = y + 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/**
|
||
|
* Computes the 2D convex hull of a set of points using Graham's scanning
|
||
|
* algorithm. The algorithm has been implemented as described in Cormen,
|
||
|
* Leiserson, and Rivest's Introduction to Algorithms. The running time of
|
||
|
* this algorithm is O(n log n), where n is the number of input points.
|
||
|
*
|
||
|
* @param vertices [[x1, y1], [x2, y2], …]
|
||
|
* @returns polygon [[x1, y1], [x2, y2], …]
|
||
|
*/
|
||
|
d3.geom.hull = function(vertices) {
|
||
|
if (vertices.length < 3) return [];
|
||
|
|
||
|
var len = vertices.length,
|
||
|
plen = len - 1,
|
||
|
points = [],
|
||
|
stack = [],
|
||
|
i, j, h = 0, x1, y1, x2, y2, u, v, a, sp;
|
||
|
|
||
|
// find the starting ref point: leftmost point with the minimum y coord
|
||
|
for (i=1; i<len; ++i) {
|
||
|
if (vertices[i][1] < vertices[h][1]) {
|
||
|
h = i;
|
||
|
} else if (vertices[i][1] == vertices[h][1]) {
|
||
|
h = (vertices[i][0] < vertices[h][0] ? i : h);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// calculate polar angles from ref point and sort
|
||
|
for (i=0; i<len; ++i) {
|
||
|
if (i === h) continue;
|
||
|
y1 = vertices[i][1] - vertices[h][1];
|
||
|
x1 = vertices[i][0] - vertices[h][0];
|
||
|
points.push({angle: Math.atan2(y1, x1), index: i});
|
||
|
}
|
||
|
points.sort(function(a, b) { return a.angle - b.angle; });
|
||
|
|
||
|
// toss out duplicate angles
|
||
|
a = points[0].angle;
|
||
|
v = points[0].index;
|
||
|
u = 0;
|
||
|
for (i=1; i<plen; ++i) {
|
||
|
j = points[i].index;
|
||
|
if (a == points[i].angle) {
|
||
|
// keep angle for point most distant from the reference
|
||
|
x1 = vertices[v][0] - vertices[h][0];
|
||
|
y1 = vertices[v][1] - vertices[h][1];
|
||
|
x2 = vertices[j][0] - vertices[h][0];
|
||
|
y2 = vertices[j][1] - vertices[h][1];
|
||
|
if ((x1*x1 + y1*y1) >= (x2*x2 + y2*y2)) {
|
||
|
points[i].index = -1;
|
||
|
} else {
|
||
|
points[u].index = -1;
|
||
|
a = points[i].angle;
|
||
|
u = i;
|
||
|
v = j;
|
||
|
}
|
||
|
} else {
|
||
|
a = points[i].angle;
|
||
|
u = i;
|
||
|
v = j;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// initialize the stack
|
||
|
stack.push(h);
|
||
|
for (i=0, j=0; i<2; ++j) {
|
||
|
if (points[j].index !== -1) {
|
||
|
stack.push(points[j].index);
|
||
|
i++;
|
||
|
}
|
||
|
}
|
||
|
sp = stack.length;
|
||
|
|
||
|
// do graham's scan
|
||
|
for (; j<plen; ++j) {
|
||
|
if (points[j].index === -1) continue; // skip tossed out points
|
||
|
while (!d3_geom_hullCCW(stack[sp-2], stack[sp-1], points[j].index, vertices)) {
|
||
|
--sp;
|
||
|
}
|
||
|
stack[sp++] = points[j].index;
|
||
|
}
|
||
|
|
||
|
// construct the hull
|
||
|
var poly = [];
|
||
|
for (i=0; i<sp; ++i) {
|
||
|
poly.push(vertices[stack[i]]);
|
||
|
}
|
||
|
return poly;
|
||
|
}
|
||
|
|
||
|
// are three points in counter-clockwise order?
|
||
|
function d3_geom_hullCCW(i1, i2, i3, v) {
|
||
|
var t, a, b, c, d, e, f;
|
||
|
t = v[i1]; a = t[0]; b = t[1];
|
||
|
t = v[i2]; c = t[0]; d = t[1];
|
||
|
t = v[i3]; e = t[0]; f = t[1];
|
||
|
return ((f-b)*(c-a) - (d-b)*(e-a)) > 0;
|
||
|
}
|
||
|
// Note: requires coordinates to be counterclockwise and convex!
|
||
|
d3.geom.polygon = function(coordinates) {
|
||
|
|
||
|
coordinates.area = function() {
|
||
|
var i = 0,
|
||
|
n = coordinates.length,
|
||
|
a = coordinates[n - 1][0] * coordinates[0][1],
|
||
|
b = coordinates[n - 1][1] * coordinates[0][0];
|
||
|
while (++i < n) {
|
||
|
a += coordinates[i - 1][0] * coordinates[i][1];
|
||
|
b += coordinates[i - 1][1] * coordinates[i][0];
|
||
|
}
|
||
|
return (b - a) * .5;
|
||
|
};
|
||
|
|
||
|
coordinates.centroid = function(k) {
|
||
|
var i = -1,
|
||
|
n = coordinates.length,
|
||
|
x = 0,
|
||
|
y = 0,
|
||
|
a,
|
||
|
b = coordinates[n - 1],
|
||
|
c;
|
||
|
if (!arguments.length) k = -1 / (6 * coordinates.area());
|
||
|
while (++i < n) {
|
||
|
a = b;
|
||
|
b = coordinates[i];
|
||
|
c = a[0] * b[1] - b[0] * a[1];
|
||
|
x += (a[0] + b[0]) * c;
|
||
|
y += (a[1] + b[1]) * c;
|
||
|
}
|
||
|
return [x * k, y * k];
|
||
|
};
|
||
|
|
||
|
// The Sutherland-Hodgman clipping algorithm.
|
||
|
coordinates.clip = function(subject) {
|
||
|
var input,
|
||
|
i = -1,
|
||
|
n = coordinates.length,
|
||
|
j,
|
||
|
m,
|
||
|
a = coordinates[n - 1],
|
||
|
b,
|
||
|
c,
|
||
|
d;
|
||
|
while (++i < n) {
|
||
|
input = subject.slice();
|
||
|
subject.length = 0;
|
||
|
b = coordinates[i];
|
||
|
c = input[(m = input.length) - 1];
|
||
|
j = -1;
|
||
|
while (++j < m) {
|
||
|
d = input[j];
|
||
|
if (d3_geom_polygonInside(d, a, b)) {
|
||
|
if (!d3_geom_polygonInside(c, a, b)) {
|
||
|
subject.push(d3_geom_polygonIntersect(c, d, a, b));
|
||
|
}
|
||
|
subject.push(d);
|
||
|
} else if (d3_geom_polygonInside(c, a, b)) {
|
||
|
subject.push(d3_geom_polygonIntersect(c, d, a, b));
|
||
|
}
|
||
|
c = d;
|
||
|
}
|
||
|
a = b;
|
||
|
}
|
||
|
return subject;
|
||
|
};
|
||
|
|
||
|
return coordinates;
|
||
|
};
|
||
|
|
||
|
function d3_geom_polygonInside(p, a, b) {
|
||
|
return (b[0] - a[0]) * (p[1] - a[1]) < (b[1] - a[1]) * (p[0] - a[0]);
|
||
|
}
|
||
|
|
||
|
// Intersect two infinite lines cd and ab.
|
||
|
function d3_geom_polygonIntersect(c, d, a, b) {
|
||
|
var x1 = c[0], x2 = d[0], x3 = a[0], x4 = b[0],
|
||
|
y1 = c[1], y2 = d[1], y3 = a[1], y4 = b[1],
|
||
|
x13 = x1 - x3,
|
||
|
x21 = x2 - x1,
|
||
|
x43 = x4 - x3,
|
||
|
y13 = y1 - y3,
|
||
|
y21 = y2 - y1,
|
||
|
y43 = y4 - y3,
|
||
|
ua = (x43 * y13 - y43 * x13) / (y43 * x21 - x43 * y21);
|
||
|
return [x1 + ua * x21, y1 + ua * y21];
|
||
|
}
|
||
|
// Adapted from Nicolas Garcia Belmonte's JIT implementation:
|
||
|
// http://blog.thejit.org/2010/02/12/voronoi-tessellation/
|
||
|
// http://blog.thejit.org/assets/voronoijs/voronoi.js
|
||
|
// See lib/jit/LICENSE for details.
|
||
|
|
||
|
// Notes:
|
||
|
//
|
||
|
// This implementation does not clip the returned polygons, so if you want to
|
||
|
// clip them to a particular shape you will need to do that either in SVG or by
|
||
|
// post-processing with d3.geom.polygon's clip method.
|
||
|
//
|
||
|
// If any vertices are coincident or have NaN positions, the behavior of this
|
||
|
// method is undefined. Most likely invalid polygons will be returned. You
|
||
|
// should filter invalid points, and consolidate coincident points, before
|
||
|
// computing the tessellation.
|
||
|
|
||
|
/**
|
||
|
* @param vertices [[x1, y1], [x2, y2], …]
|
||
|
* @returns polygons [[[x1, y1], [x2, y2], …], …]
|
||
|
*/
|
||
|
d3.geom.voronoi = function(vertices) {
|
||
|
var polygons = vertices.map(function() { return []; });
|
||
|
|
||
|
d3_voronoi_tessellate(vertices, function(e) {
|
||
|
var s1,
|
||
|
s2,
|
||
|
x1,
|
||
|
x2,
|
||
|
y1,
|
||
|
y2;
|
||
|
if (e.a === 1 && e.b >= 0) {
|
||
|
s1 = e.ep.r;
|
||
|
s2 = e.ep.l;
|
||
|
} else {
|
||
|
s1 = e.ep.l;
|
||
|
s2 = e.ep.r;
|
||
|
}
|
||
|
if (e.a === 1) {
|
||
|
y1 = s1 ? s1.y : -1e6;
|
||
|
x1 = e.c - e.b * y1;
|
||
|
y2 = s2 ? s2.y : 1e6;
|
||
|
x2 = e.c - e.b * y2;
|
||
|
} else {
|
||
|
x1 = s1 ? s1.x : -1e6;
|
||
|
y1 = e.c - e.a * x1;
|
||
|
x2 = s2 ? s2.x : 1e6;
|
||
|
y2 = e.c - e.a * x2;
|
||
|
}
|
||
|
var v1 = [x1, y1],
|
||
|
v2 = [x2, y2];
|
||
|
polygons[e.region.l.index].push(v1, v2);
|
||
|
polygons[e.region.r.index].push(v1, v2);
|
||
|
});
|
||
|
|
||
|
// Reconnect the polygon segments into counterclockwise loops.
|
||
|
return polygons.map(function(polygon, i) {
|
||
|
var cx = vertices[i][0],
|
||
|
cy = vertices[i][1];
|
||
|
polygon.forEach(function(v) {
|
||
|
v.angle = Math.atan2(v[0] - cx, v[1] - cy);
|
||
|
});
|
||
|
return polygon.sort(function(a, b) {
|
||
|
return a.angle - b.angle;
|
||
|
}).filter(function(d, i) {
|
||
|
return !i || (d.angle - polygon[i - 1].angle > 1e-10);
|
||
|
});
|
||
|
});
|
||
|
};
|
||
|
|
||
|
var d3_voronoi_opposite = {"l": "r", "r": "l"};
|
||
|
|
||
|
function d3_voronoi_tessellate(vertices, callback) {
|
||
|
|
||
|
var Sites = {
|
||
|
list: vertices
|
||
|
.map(function(v, i) {
|
||
|
return {
|
||
|
index: i,
|
||
|
x: v[0],
|
||
|
y: v[1]
|
||
|
};
|
||
|
})
|
||
|
.sort(function(a, b) {
|
||
|
return a.y < b.y ? -1
|
||
|
: a.y > b.y ? 1
|
||
|
: a.x < b.x ? -1
|
||
|
: a.x > b.x ? 1
|
||
|
: 0;
|
||
|
}),
|
||
|
bottomSite: null
|
||
|
};
|
||
|
|
||
|
var EdgeList = {
|
||
|
list: [],
|
||
|
leftEnd: null,
|
||
|
rightEnd: null,
|
||
|
|
||
|
init: function() {
|
||
|
EdgeList.leftEnd = EdgeList.createHalfEdge(null, "l");
|
||
|
EdgeList.rightEnd = EdgeList.createHalfEdge(null, "l");
|
||
|
EdgeList.leftEnd.r = EdgeList.rightEnd;
|
||
|
EdgeList.rightEnd.l = EdgeList.leftEnd;
|
||
|
EdgeList.list.unshift(EdgeList.leftEnd, EdgeList.rightEnd);
|
||
|
},
|
||
|
|
||
|
createHalfEdge: function(edge, side) {
|
||
|
return {
|
||
|
edge: edge,
|
||
|
side: side,
|
||
|
vertex: null,
|
||
|
"l": null,
|
||
|
"r": null
|
||
|
};
|
||
|
},
|
||
|
|
||
|
insert: function(lb, he) {
|
||
|
he.l = lb;
|
||
|
he.r = lb.r;
|
||
|
lb.r.l = he;
|
||
|
lb.r = he;
|
||
|
},
|
||
|
|
||
|
leftBound: function(p) {
|
||
|
var he = EdgeList.leftEnd;
|
||
|
do {
|
||
|
he = he.r;
|
||
|
} while (he != EdgeList.rightEnd && Geom.rightOf(he, p));
|
||
|
he = he.l;
|
||
|
return he;
|
||
|
},
|
||
|
|
||
|
del: function(he) {
|
||
|
he.l.r = he.r;
|
||
|
he.r.l = he.l;
|
||
|
he.edge = null;
|
||
|
},
|
||
|
|
||
|
right: function(he) {
|
||
|
return he.r;
|
||
|
},
|
||
|
|
||
|
left: function(he) {
|
||
|
return he.l;
|
||
|
},
|
||
|
|
||
|
leftRegion: function(he) {
|
||
|
return he.edge == null
|
||
|
? Sites.bottomSite
|
||
|
: he.edge.region[he.side];
|
||
|
},
|
||
|
|
||
|
rightRegion: function(he) {
|
||
|
return he.edge == null
|
||
|
? Sites.bottomSite
|
||
|
: he.edge.region[d3_voronoi_opposite[he.side]];
|
||
|
}
|
||
|
};
|
||
|
|
||
|
var Geom = {
|
||
|
|
||
|
bisect: function(s1, s2) {
|
||
|
var newEdge = {
|
||
|
region: {"l": s1, "r": s2},
|
||
|
ep: {"l": null, "r": null}
|
||
|
};
|
||
|
|
||
|
var dx = s2.x - s1.x,
|
||
|
dy = s2.y - s1.y,
|
||
|
adx = dx > 0 ? dx : -dx,
|
||
|
ady = dy > 0 ? dy : -dy;
|
||
|
|
||
|
newEdge.c = s1.x * dx + s1.y * dy
|
||
|
+ (dx * dx + dy * dy) * .5;
|
||
|
|
||
|
if (adx > ady) {
|
||
|
newEdge.a = 1;
|
||
|
newEdge.b = dy / dx;
|
||
|
newEdge.c /= dx;
|
||
|
} else {
|
||
|
newEdge.b = 1;
|
||
|
newEdge.a = dx / dy;
|
||
|
newEdge.c /= dy;
|
||
|
}
|
||
|
|
||
|
return newEdge;
|
||
|
},
|
||
|
|
||
|
intersect: function(el1, el2) {
|
||
|
var e1 = el1.edge,
|
||
|
e2 = el2.edge;
|
||
|
if (!e1 || !e2 || (e1.region.r == e2.region.r)) {
|
||
|
return null;
|
||
|
}
|
||
|
var d = (e1.a * e2.b) - (e1.b * e2.a);
|
||
|
if (Math.abs(d) < 1e-10) {
|
||
|
return null;
|
||
|
}
|
||
|
var xint = (e1.c * e2.b - e2.c * e1.b) / d,
|
||
|
yint = (e2.c * e1.a - e1.c * e2.a) / d,
|
||
|
e1r = e1.region.r,
|
||
|
e2r = e2.region.r,
|
||
|
el,
|
||
|
e;
|
||
|
if ((e1r.y < e2r.y) ||
|
||
|
(e1r.y == e2r.y && e1r.x < e2r.x)) {
|
||
|
el = el1;
|
||
|
e = e1;
|
||
|
} else {
|
||
|
el = el2;
|
||
|
e = e2;
|
||
|
}
|
||
|
var rightOfSite = (xint >= e.region.r.x);
|
||
|
if ((rightOfSite && (el.side === "l")) ||
|
||
|
(!rightOfSite && (el.side === "r"))) {
|
||
|
return null;
|
||
|
}
|
||
|
return {
|
||
|
x: xint,
|
||
|
y: yint
|
||
|
};
|
||
|
},
|
||
|
|
||
|
rightOf: function(he, p) {
|
||
|
var e = he.edge,
|
||
|
topsite = e.region.r,
|
||
|
rightOfSite = (p.x > topsite.x);
|
||
|
|
||
|
if (rightOfSite && (he.side === "l")) {
|
||
|
return 1;
|
||
|
}
|
||
|
if (!rightOfSite && (he.side === "r")) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (e.a === 1) {
|
||
|
var dyp = p.y - topsite.y,
|
||
|
dxp = p.x - topsite.x,
|
||
|
fast = 0,
|
||
|
above = 0;
|
||
|
|
||
|
if ((!rightOfSite && (e.b < 0)) ||
|
||
|
(rightOfSite && (e.b >= 0))) {
|
||
|
above = fast = (dyp >= e.b * dxp);
|
||
|
} else {
|
||
|
above = ((p.x + p.y * e.b) > e.c);
|
||
|
if (e.b < 0) {
|
||
|
above = !above;
|
||
|
}
|
||
|
if (!above) {
|
||
|
fast = 1;
|
||
|
}
|
||
|
}
|
||
|
if (!fast) {
|
||
|
var dxs = topsite.x - e.region.l.x;
|
||
|
above = (e.b * (dxp * dxp - dyp * dyp)) <
|
||
|
(dxs * dyp * (1 + 2 * dxp / dxs + e.b * e.b));
|
||
|
|
||
|
if (e.b < 0) {
|
||
|
above = !above;
|
||
|
}
|
||
|
}
|
||
|
} else /* e.b == 1 */ {
|
||
|
var yl = e.c - e.a * p.x,
|
||
|
t1 = p.y - yl,
|
||
|
t2 = p.x - topsite.x,
|
||
|
t3 = yl - topsite.y;
|
||
|
|
||
|
above = (t1 * t1) > (t2 * t2 + t3 * t3);
|
||
|
}
|
||
|
return he.side === "l" ? above : !above;
|
||
|
},
|
||
|
|
||
|
endPoint: function(edge, side, site) {
|
||
|
edge.ep[side] = site;
|
||
|
if (!edge.ep[d3_voronoi_opposite[side]]) return;
|
||
|
callback(edge);
|
||
|
},
|
||
|
|
||
|
distance: function(s, t) {
|
||
|
var dx = s.x - t.x,
|
||
|
dy = s.y - t.y;
|
||
|
return Math.sqrt(dx * dx + dy * dy);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
var EventQueue = {
|
||
|
list: [],
|
||
|
|
||
|
insert: function(he, site, offset) {
|
||
|
he.vertex = site;
|
||
|
he.ystar = site.y + offset;
|
||
|
for (var i=0, list=EventQueue.list, l=list.length; i<l; i++) {
|
||
|
var next = list[i];
|
||
|
if (he.ystar > next.ystar ||
|
||
|
(he.ystar == next.ystar &&
|
||
|
site.x > next.vertex.x)) {
|
||
|
continue;
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
list.splice(i, 0, he);
|
||
|
},
|
||
|
|
||
|
del: function(he) {
|
||
|
for (var i=0, ls=EventQueue.list, l=ls.length; i<l && (ls[i] != he); ++i) {}
|
||
|
ls.splice(i, 1);
|
||
|
},
|
||
|
|
||
|
empty: function() { return EventQueue.list.length === 0; },
|
||
|
|
||
|
nextEvent: function(he) {
|
||
|
for (var i=0, ls=EventQueue.list, l=ls.length; i<l; ++i) {
|
||
|
if (ls[i] == he) return ls[i+1];
|
||
|
}
|
||
|
return null;
|
||
|
},
|
||
|
|
||
|
min: function() {
|
||
|
var elem = EventQueue.list[0];
|
||
|
return {
|
||
|
x: elem.vertex.x,
|
||
|
y: elem.ystar
|
||
|
};
|
||
|
},
|
||
|
|
||
|
extractMin: function() {
|
||
|
return EventQueue.list.shift();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
EdgeList.init();
|
||
|
Sites.bottomSite = Sites.list.shift();
|
||
|
|
||
|
var newSite = Sites.list.shift(), newIntStar;
|
||
|
var lbnd, rbnd, llbnd, rrbnd, bisector;
|
||
|
var bot, top, temp, p, v;
|
||
|
var e, pm;
|
||
|
|
||
|
while (true) {
|
||
|
if (!EventQueue.empty()) {
|
||
|
newIntStar = EventQueue.min();
|
||
|
}
|
||
|
if (newSite && (EventQueue.empty()
|
||
|
|| newSite.y < newIntStar.y
|
||
|
|| (newSite.y == newIntStar.y
|
||
|
&& newSite.x < newIntStar.x))) { //new site is smallest
|
||
|
lbnd = EdgeList.leftBound(newSite);
|
||
|
rbnd = EdgeList.right(lbnd);
|
||
|
bot = EdgeList.rightRegion(lbnd);
|
||
|
e = Geom.bisect(bot, newSite);
|
||
|
bisector = EdgeList.createHalfEdge(e, "l");
|
||
|
EdgeList.insert(lbnd, bisector);
|
||
|
p = Geom.intersect(lbnd, bisector);
|
||
|
if (p) {
|
||
|
EventQueue.del(lbnd);
|
||
|
EventQueue.insert(lbnd, p, Geom.distance(p, newSite));
|
||
|
}
|
||
|
lbnd = bisector;
|
||
|
bisector = EdgeList.createHalfEdge(e, "r");
|
||
|
EdgeList.insert(lbnd, bisector);
|
||
|
p = Geom.intersect(bisector, rbnd);
|
||
|
if (p) {
|
||
|
EventQueue.insert(bisector, p, Geom.distance(p, newSite));
|
||
|
}
|
||
|
newSite = Sites.list.shift();
|
||
|
} else if (!EventQueue.empty()) { //intersection is smallest
|
||
|
lbnd = EventQueue.extractMin();
|
||
|
llbnd = EdgeList.left(lbnd);
|
||
|
rbnd = EdgeList.right(lbnd);
|
||
|
rrbnd = EdgeList.right(rbnd);
|
||
|
bot = EdgeList.leftRegion(lbnd);
|
||
|
top = EdgeList.rightRegion(rbnd);
|
||
|
v = lbnd.vertex;
|
||
|
Geom.endPoint(lbnd.edge, lbnd.side, v);
|
||
|
Geom.endPoint(rbnd.edge, rbnd.side, v);
|
||
|
EdgeList.del(lbnd);
|
||
|
EventQueue.del(rbnd);
|
||
|
EdgeList.del(rbnd);
|
||
|
pm = "l";
|
||
|
if (bot.y > top.y) {
|
||
|
temp = bot;
|
||
|
bot = top;
|
||
|
top = temp;
|
||
|
pm = "r";
|
||
|
}
|
||
|
e = Geom.bisect(bot, top);
|
||
|
bisector = EdgeList.createHalfEdge(e, pm);
|
||
|
EdgeList.insert(llbnd, bisector);
|
||
|
Geom.endPoint(e, d3_voronoi_opposite[pm], v);
|
||
|
p = Geom.intersect(llbnd, bisector);
|
||
|
if (p) {
|
||
|
EventQueue.del(llbnd);
|
||
|
EventQueue.insert(llbnd, p, Geom.distance(p, bot));
|
||
|
}
|
||
|
p = Geom.intersect(bisector, rrbnd);
|
||
|
if (p) {
|
||
|
EventQueue.insert(bisector, p, Geom.distance(p, bot));
|
||
|
}
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
}//end while
|
||
|
|
||
|
for (lbnd = EdgeList.right(EdgeList.leftEnd);
|
||
|
lbnd != EdgeList.rightEnd;
|
||
|
lbnd = EdgeList.right(lbnd)) {
|
||
|
callback(lbnd.edge);
|
||
|
}
|
||
|
}
|
||
|
/**
|
||
|
* @param vertices [[x1, y1], [x2, y2], …]
|
||
|
* @returns triangles [[[x1, y1], [x2, y2], [x3, y3]], …]
|
||
|
*/
|
||
|
d3.geom.delaunay = function(vertices) {
|
||
|
var edges = vertices.map(function() { return []; }),
|
||
|
triangles = [];
|
||
|
|
||
|
// Use the Voronoi tessellation to determine Delaunay edges.
|
||
|
d3_voronoi_tessellate(vertices, function(e) {
|
||
|
edges[e.region.l.index].push(vertices[e.region.r.index]);
|
||
|
});
|
||
|
|
||
|
// Reconnect the edges into counterclockwise triangles.
|
||
|
edges.forEach(function(edge, i) {
|
||
|
var v = vertices[i],
|
||
|
cx = v[0],
|
||
|
cy = v[1];
|
||
|
edge.forEach(function(v) {
|
||
|
v.angle = Math.atan2(v[0] - cx, v[1] - cy);
|
||
|
});
|
||
|
edge.sort(function(a, b) {
|
||
|
return a.angle - b.angle;
|
||
|
});
|
||
|
for (var j = 0, m = edge.length - 1; j < m; j++) {
|
||
|
triangles.push([v, edge[j], edge[j + 1]]);
|
||
|
}
|
||
|
});
|
||
|
|
||
|
return triangles;
|
||
|
};
|
||
|
// Constructs a new quadtree for the specified array of points. A quadtree is a
|
||
|
// two-dimensional recursive spatial subdivision. This implementation uses
|
||
|
// square partitions, dividing each square into four equally-sized squares. Each
|
||
|
// point exists in a unique node; if multiple points are in the same position,
|
||
|
// some points may be stored on internal nodes rather than leaf nodes. Quadtrees
|
||
|
// can be used to accelerate various spatial operations, such as the Barnes-Hut
|
||
|
// approximation for computing n-body forces, or collision detection.
|
||
|
d3.geom.quadtree = function(points, x1, y1, x2, y2) {
|
||
|
var p,
|
||
|
i = -1,
|
||
|
n = points.length;
|
||
|
|
||
|
// Type conversion for deprecated API.
|
||
|
if (n && isNaN(points[0].x)) points = points.map(d3_geom_quadtreePoint);
|
||
|
|
||
|
// Allow bounds to be specified explicitly.
|
||
|
if (arguments.length < 5) {
|
||
|
if (arguments.length === 3) {
|
||
|
y2 = x2 = y1;
|
||
|
y1 = x1;
|
||
|
} else {
|
||
|
x1 = y1 = Infinity;
|
||
|
x2 = y2 = -Infinity;
|
||
|
|
||
|
// Compute bounds.
|
||
|
while (++i < n) {
|
||
|
p = points[i];
|
||
|
if (p.x < x1) x1 = p.x;
|
||
|
if (p.y < y1) y1 = p.y;
|
||
|
if (p.x > x2) x2 = p.x;
|
||
|
if (p.y > y2) y2 = p.y;
|
||
|
}
|
||
|
|
||
|
// Squarify the bounds.
|
||
|
var dx = x2 - x1,
|
||
|
dy = y2 - y1;
|
||
|
if (dx > dy) y2 = y1 + dx;
|
||
|
else x2 = x1 + dy;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Recursively inserts the specified point p at the node n or one of its
|
||
|
// descendants. The bounds are defined by [x1, x2] and [y1, y2].
|
||
|
function insert(n, p, x1, y1, x2, y2) {
|
||
|
if (isNaN(p.x) || isNaN(p.y)) return; // ignore invalid points
|
||
|
if (n.leaf) {
|
||
|
var v = n.point;
|
||
|
if (v) {
|
||
|
// If the point at this leaf node is at the same position as the new
|
||
|
// point we are adding, we leave the point associated with the
|
||
|
// internal node while adding the new point to a child node. This
|
||
|
// avoids infinite recursion.
|
||
|
if ((Math.abs(v.x - p.x) + Math.abs(v.y - p.y)) < .01) {
|
||
|
insertChild(n, p, x1, y1, x2, y2);
|
||
|
} else {
|
||
|
n.point = null;
|
||
|
insertChild(n, v, x1, y1, x2, y2);
|
||
|
insertChild(n, p, x1, y1, x2, y2);
|
||
|
}
|
||
|
} else {
|
||
|
n.point = p;
|
||
|
}
|
||
|
} else {
|
||
|
insertChild(n, p, x1, y1, x2, y2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Recursively inserts the specified point p into a descendant of node n. The
|
||
|
// bounds are defined by [x1, x2] and [y1, y2].
|
||
|
function insertChild(n, p, x1, y1, x2, y2) {
|
||
|
// Compute the split point, and the quadrant in which to insert p.
|
||
|
var sx = (x1 + x2) * .5,
|
||
|
sy = (y1 + y2) * .5,
|
||
|
right = p.x >= sx,
|
||
|
bottom = p.y >= sy,
|
||
|
i = (bottom << 1) + right;
|
||
|
|
||
|
// Recursively insert into the child node.
|
||
|
n.leaf = false;
|
||
|
n = n.nodes[i] || (n.nodes[i] = d3_geom_quadtreeNode());
|
||
|
|
||
|
// Update the bounds as we recurse.
|
||
|
if (right) x1 = sx; else x2 = sx;
|
||
|
if (bottom) y1 = sy; else y2 = sy;
|
||
|
insert(n, p, x1, y1, x2, y2);
|
||
|
}
|
||
|
|
||
|
// Create the root node.
|
||
|
var root = d3_geom_quadtreeNode();
|
||
|
|
||
|
root.add = function(p) {
|
||
|
insert(root, p, x1, y1, x2, y2);
|
||
|
};
|
||
|
|
||
|
root.visit = function(f) {
|
||
|
d3_geom_quadtreeVisit(f, root, x1, y1, x2, y2);
|
||
|
};
|
||
|
|
||
|
// Insert all points.
|
||
|
points.forEach(root.add);
|
||
|
return root;
|
||
|
};
|
||
|
|
||
|
function d3_geom_quadtreeNode() {
|
||
|
return {
|
||
|
leaf: true,
|
||
|
nodes: [],
|
||
|
point: null
|
||
|
};
|
||
|
}
|
||
|
|
||
|
function d3_geom_quadtreeVisit(f, node, x1, y1, x2, y2) {
|
||
|
if (!f(node, x1, y1, x2, y2)) {
|
||
|
var sx = (x1 + x2) * .5,
|
||
|
sy = (y1 + y2) * .5,
|
||
|
children = node.nodes;
|
||
|
if (children[0]) d3_geom_quadtreeVisit(f, children[0], x1, y1, sx, sy);
|
||
|
if (children[1]) d3_geom_quadtreeVisit(f, children[1], sx, y1, x2, sy);
|
||
|
if (children[2]) d3_geom_quadtreeVisit(f, children[2], x1, sy, sx, y2);
|
||
|
if (children[3]) d3_geom_quadtreeVisit(f, children[3], sx, sy, x2, y2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
function d3_geom_quadtreePoint(p) {
|
||
|
return {
|
||
|
x: p[0],
|
||
|
y: p[1]
|
||
|
};
|
||
|
}
|
||
|
})();
|